Cargando…
Computational and neural mechanisms of statistical pain learning
Pain invariably changes over time. These fluctuations contain statistical regularities which, in theory, could be learned by the brain to generate expectations and control responses. We demonstrate that humans learn to extract these regularities and explicitly predict the likelihood of forthcoming p...
Autores principales: | Mancini, Flavia, Zhang, Suyi, Seymour, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633765/ https://www.ncbi.nlm.nih.gov/pubmed/36329014 http://dx.doi.org/10.1038/s41467-022-34283-9 |
Ejemplares similares
-
Pain Control by Co-adaptive Learning in a Brain-Machine Interface
por: Zhang, Suyi, et al.
Publicado: (2020) -
Dissociable Learning Processes Underlie Human Pain Conditioning
por: Zhang, Suyi, et al.
Publicado: (2016) -
The control of tonic pain by active relief learning
por: Zhang, Suyi, et al.
Publicado: (2018) -
Confidence of probabilistic predictions modulates the cortical response to pain
por: Mulders, Dounia, et al.
Publicado: (2023) -
Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal–Opercular (SII) Cortex
por: Mano, Hiroaki, et al.
Publicado: (2017)