Cargando…
Neural dynamics of phoneme sequences reveal position-invariant code for content and order
Speech consists of a continuously-varying acoustic signal. Yet human listeners experience it as sequences of discrete speech sounds, which are used to recognise discrete words. To examine how the human brain appropriately sequences the speech signal, we recorded two-hour magnetoencephalograms from 2...
Autores principales: | Gwilliams, Laura, King, Jean-Remi, Marantz, Alec, Poeppel, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633780/ https://www.ncbi.nlm.nih.gov/pubmed/36329058 http://dx.doi.org/10.1038/s41467-022-34326-1 |
Ejemplares similares
-
Introducing MEG-MASC a high-quality magneto-encephalography dataset for evaluating natural speech processing
por: Gwilliams, Laura, et al.
Publicado: (2023) -
Adaptation to mis-pronounced speech: evidence for a prefrontal-cortex repair mechanism
por: Blanco-Elorrieta, Esti, et al.
Publicado: (2021) -
Prefix Stripping Re-Re-Revisited: MEG Investigations of Morphological Decomposition and Recomposition
por: Stockall, Linnaea, et al.
Publicado: (2019) -
The Use of Phonetic Motor Invariants Can Improve Automatic Phoneme Discrimination
por: Castellini, Claudio, et al.
Publicado: (2011) -
Hierarchical Neural Network Structures for Phoneme Recognition
por: Vasquez, Daniel, et al.
Publicado: (2013)