Cargando…

An improved multi-view spectral clustering based on tissue-like P systems

Multi-view spectral clustering is one of the multi-view clustering methods widely studied by numerous scholars. The first step of multi-view spectral clustering is to construct the similarity matrix of each view. Consequently, the clustering performance will be greatly affected by the quality of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Huijian, Liu, Xiyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633800/
https://www.ncbi.nlm.nih.gov/pubmed/36329060
http://dx.doi.org/10.1038/s41598-022-20358-6
Descripción
Sumario:Multi-view spectral clustering is one of the multi-view clustering methods widely studied by numerous scholars. The first step of multi-view spectral clustering is to construct the similarity matrix of each view. Consequently, the clustering performance will be greatly affected by the quality of the similarity matrix of each view. To solve this problem well, an improved multi-view spectral clustering based on tissue-like P systems is proposed in this paper. The optimal per-view similarity matrix is generated in an iterative manner. In addition, spectral clustering is combined with the symmetric nonnegative matrix factorization method to directly output the clustering results to avoid the secondary operation, such as k-means or spectral rotation. Furthermore, improved multi-view spectral clustering is integrated with the tissue-like P system to enhance the computational efficiency of the multi-view clustering algorithm. Extensive experiments verify the effectiveness of this algorithm over other state-of-the-art algorithms.