Cargando…
Wide Grain 3, a GRAS Protein, Interacts with DLT to Regulate Grain Size and Brassinosteroid Signaling in Rice
BACKGROUND: Grain size is a direct determinant of grain weight and yield in rice; however, the genetic and molecular mechanisms determining grain size remain largely unknown. FINDINGS: We identified a mutant, wide grain 3 (wg3), which exhibited significantly increased grain width and 1000-grain weig...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633911/ https://www.ncbi.nlm.nih.gov/pubmed/36326916 http://dx.doi.org/10.1186/s12284-022-00601-4 |
Sumario: | BACKGROUND: Grain size is a direct determinant of grain weight and yield in rice; however, the genetic and molecular mechanisms determining grain size remain largely unknown. FINDINGS: We identified a mutant, wide grain 3 (wg3), which exhibited significantly increased grain width and 1000-grain weight. Cytological analysis showed that WG3 regulates grain size by affecting cell proliferation. MutMap-based gene cloning and a transgenic experiment demonstrated that WG3 encodes a GRAS protein. Moreover, we found that WG3 directly interacts with DWARF AND LOW-TILLERING (DLT), a previously reported GRAS protein, and a genetic experiment demonstrated that WG3 and DLT function in a common pathway to regulate grain size. Additionally, a brassinosteroid (BR) sensitivity test suggested that WG3 has a positive role in BR signaling in rice. Collectively, our results reveal a new genetic and molecular mechanism for the regulation of grain size in rice by the WG3-DLT complex, and highlight the important functions of the GRAS protein complex in plants. CONCLUSION: WG3 functions directly in regulating grain size and BR signaling in rice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12284-022-00601-4. |
---|