Cargando…

Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory

Holy basil (Ocimum Tenuiflorum L.) is a widely used herb containing several bioactive compounds of interest for the food and pharmaceutical industries. Plant factories using artificial lighting (PFAL) is a modern agricultural system that offers opportunity to improve crop production and stabilizes p...

Descripción completa

Detalles Bibliográficos
Autores principales: Chutimanukul, Panita, Jindamol, Hathairut, Thongtip, Akira, Korinsak, Siripar, Romyanon, Kanokwan, Toojinda, Theerayut, Darwell, Clive Terence, Wanichananan, Praderm, Panya, Atikorn, Kaewsri, Wilailak, Auvuchanon, Anyamanee, Mosaleeyanon, Kriengkrai, Chutimanukul, Preuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634403/
https://www.ncbi.nlm.nih.gov/pubmed/36340360
http://dx.doi.org/10.3389/fpls.2022.1008917
_version_ 1784824484269654016
author Chutimanukul, Panita
Jindamol, Hathairut
Thongtip, Akira
Korinsak, Siripar
Romyanon, Kanokwan
Toojinda, Theerayut
Darwell, Clive Terence
Wanichananan, Praderm
Panya, Atikorn
Kaewsri, Wilailak
Auvuchanon, Anyamanee
Mosaleeyanon, Kriengkrai
Chutimanukul, Preuk
author_facet Chutimanukul, Panita
Jindamol, Hathairut
Thongtip, Akira
Korinsak, Siripar
Romyanon, Kanokwan
Toojinda, Theerayut
Darwell, Clive Terence
Wanichananan, Praderm
Panya, Atikorn
Kaewsri, Wilailak
Auvuchanon, Anyamanee
Mosaleeyanon, Kriengkrai
Chutimanukul, Preuk
author_sort Chutimanukul, Panita
collection PubMed
description Holy basil (Ocimum Tenuiflorum L.) is a widely used herb containing several bioactive compounds of interest for the food and pharmaceutical industries. Plant factories using artificial lighting (PFAL) is a modern agricultural system that offers opportunity to improve crop production and stabilizes productivity in many herbal plants. However, little is known about the variation among holy basil varieties that can be cultivated and provide reasonable biomass and bioactive compounds in PFAL. We therefore evaluated 10 Thai accessions and two commercial cultivars in a PFAL (with hydroponic cultivation) to categorize cultivar characteristics by investigating physiological responses and secondary metabolite variation at plant flowering stage. Among Thai varieties, net photosynthetic rate (Pn) was significantly highest in varieties OC059 and OC081. The greatest growth and biomass measures were observed in OC064. Antioxidant capacity also varied, with the greatest accumulation of total phenolic compounds (TPC), flavonoids, and antioxidant activity by DPPH assay in OC064, and highest terpenoid content in OC194. The accumulation of major compounds confirmed by showing the highest levels of eugenol in OC057, OC063, OC194, and OC195 and methyl eugenol in OC072 and OC081. The highest α-humulene content was found in OC059. PCA based on physiological responses and secondary metabolites indicate that OC064 was clearly distinguished from other cultivars/accessions. These findings demonstrate variation across holy basil accessions for physiologic responses, antioxidant capacity, and secondary compounds in PFAL. These insights lead to identification of suitable varieties which is the most important step of developing an efficient method for producing high quality raw materials of Thai holy basil for supplying the foods and pharmaceutical industries.
format Online
Article
Text
id pubmed-9634403
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-96344032022-11-05 Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory Chutimanukul, Panita Jindamol, Hathairut Thongtip, Akira Korinsak, Siripar Romyanon, Kanokwan Toojinda, Theerayut Darwell, Clive Terence Wanichananan, Praderm Panya, Atikorn Kaewsri, Wilailak Auvuchanon, Anyamanee Mosaleeyanon, Kriengkrai Chutimanukul, Preuk Front Plant Sci Plant Science Holy basil (Ocimum Tenuiflorum L.) is a widely used herb containing several bioactive compounds of interest for the food and pharmaceutical industries. Plant factories using artificial lighting (PFAL) is a modern agricultural system that offers opportunity to improve crop production and stabilizes productivity in many herbal plants. However, little is known about the variation among holy basil varieties that can be cultivated and provide reasonable biomass and bioactive compounds in PFAL. We therefore evaluated 10 Thai accessions and two commercial cultivars in a PFAL (with hydroponic cultivation) to categorize cultivar characteristics by investigating physiological responses and secondary metabolite variation at plant flowering stage. Among Thai varieties, net photosynthetic rate (Pn) was significantly highest in varieties OC059 and OC081. The greatest growth and biomass measures were observed in OC064. Antioxidant capacity also varied, with the greatest accumulation of total phenolic compounds (TPC), flavonoids, and antioxidant activity by DPPH assay in OC064, and highest terpenoid content in OC194. The accumulation of major compounds confirmed by showing the highest levels of eugenol in OC057, OC063, OC194, and OC195 and methyl eugenol in OC072 and OC081. The highest α-humulene content was found in OC059. PCA based on physiological responses and secondary metabolites indicate that OC064 was clearly distinguished from other cultivars/accessions. These findings demonstrate variation across holy basil accessions for physiologic responses, antioxidant capacity, and secondary compounds in PFAL. These insights lead to identification of suitable varieties which is the most important step of developing an efficient method for producing high quality raw materials of Thai holy basil for supplying the foods and pharmaceutical industries. Frontiers Media S.A. 2022-10-21 /pmc/articles/PMC9634403/ /pubmed/36340360 http://dx.doi.org/10.3389/fpls.2022.1008917 Text en Copyright © 2022 Chutimanukul, Jindamol, Thongtip, Korinsak, Romyanon, Toojinda, Darwell, Wanichananan, Panya, Kaewsri, Auvuchanon, Mosaleeyanon and Chutimanukul https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Chutimanukul, Panita
Jindamol, Hathairut
Thongtip, Akira
Korinsak, Siripar
Romyanon, Kanokwan
Toojinda, Theerayut
Darwell, Clive Terence
Wanichananan, Praderm
Panya, Atikorn
Kaewsri, Wilailak
Auvuchanon, Anyamanee
Mosaleeyanon, Kriengkrai
Chutimanukul, Preuk
Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory
title Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory
title_full Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory
title_fullStr Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory
title_full_unstemmed Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory
title_short Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory
title_sort physiological responses and variation in secondary metabolite content among thai holy basil cultivars (ocimum tenuiflorum l.) grown under controlled environmental conditions in a plant factory
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634403/
https://www.ncbi.nlm.nih.gov/pubmed/36340360
http://dx.doi.org/10.3389/fpls.2022.1008917
work_keys_str_mv AT chutimanukulpanita physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT jindamolhathairut physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT thongtipakira physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT korinsaksiripar physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT romyanonkanokwan physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT toojindatheerayut physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT darwellcliveterence physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT wanichanananpraderm physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT panyaatikorn physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT kaewsriwilailak physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT auvuchanonanyamanee physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT mosaleeyanonkriengkrai physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory
AT chutimanukulpreuk physiologicalresponsesandvariationinsecondarymetabolitecontentamongthaiholybasilcultivarsocimumtenuiflorumlgrownundercontrolledenvironmentalconditionsinaplantfactory