Cargando…
Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean
Using a reliable and accurate method to phenotype disease incidence and severity is essential to unravel the complex genetic architecture of disease resistance in plants, and to develop disease resistant cultivars. Genome-wide association studies (GWAS) involve phenotyping large numbers of accession...
Autores principales: | Rairdin, Ashlyn, Fotouhi, Fateme, Zhang, Jiaoping, Mueller, Daren S., Ganapathysubramanian, Baskar, Singh, Asheesh K., Dutta, Somak, Sarkar, Soumik, Singh, Arti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634489/ https://www.ncbi.nlm.nih.gov/pubmed/36340398 http://dx.doi.org/10.3389/fpls.2022.966244 |
Ejemplares similares
-
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
por: Young, Therin J., et al.
Publicado: (2023) -
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
por: Naik, Hsiang Sing, et al.
Publicado: (2017) -
Computer vision and machine learning for robust phenotyping in genome-wide studies
por: Zhang, Jiaoping, et al.
Publicado: (2017) -
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018)