Cargando…
Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response
Background: Increasing evidence illustrated that m6A regulator-mediated modification plays a crucial role in regulating tumor immune and angiogenesis microenvironment. And the combination of immune checkpoint inhibitor and anti-angiogenic therapy has been approved as new first-line therapy for advan...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634552/ https://www.ncbi.nlm.nih.gov/pubmed/36339715 http://dx.doi.org/10.3389/fmolb.2022.1034928 |
_version_ | 1784824520764293120 |
---|---|
author | Wang, Xiang-Xu Wu, Li-Hong Dou, Qiong-Yi Ai, Liping Lu, Yajie Deng, Shi-Zhou Liu, Qing-Qing Ji, Hongchen Zhang, Hong-Mei |
author_facet | Wang, Xiang-Xu Wu, Li-Hong Dou, Qiong-Yi Ai, Liping Lu, Yajie Deng, Shi-Zhou Liu, Qing-Qing Ji, Hongchen Zhang, Hong-Mei |
author_sort | Wang, Xiang-Xu |
collection | PubMed |
description | Background: Increasing evidence illustrated that m6A regulator-mediated modification plays a crucial role in regulating tumor immune and angiogenesis microenvironment. And the combination of immune checkpoint inhibitor and anti-angiogenic therapy has been approved as new first-line therapy for advanced HCC. This study constructed a novel prognosis signature base on m6A-mediated modification and explored the related mechanism in predicting immune and anti-angiogenic responses. Methods: Gene expression profiles and clinical information were collected from TCGA and GEO. The ssGSEA, MCPCOUNT, and TIMER 2.0 algorithm was used to Estimation of immune cell infiltration. The IC(50) of anti-angiogenic drugs in GDSC was calculated by the “pRRophetic” package. IMvigor210 cohort and Liu et al. cohort were used to validate the capability of immunotherapy response. Hepatocellular carcinoma single immune cells sequencing datasets GSE140228 were collected to present the expression landscapes of 5 hub genes in different sites and immune cell subpopulations of HCC patients. Results: Three m6A clusters with distinct immune and angiogenesis microenvironments were identified by consistent cluster analysis based on the expression of m6A regulators. We further constructed a 5-gene prognosis signature (termed as m6Asig-Score) which could predict both immune and anti-angiogenic responses. We illustrated that high m6Asig-Score is associated with poor prognosis, advanced TNM stage, and high TP53 mutation frequency. Besides, the m6Asig-Score was negatively associated with immune checkpoint inhibitors and anti-angiogenic drug response. We further found that two of the five m6Asig-Score inner genes, B2M and SMOX, were associated with immune cell infiltration, immune response, and the sensitivity to sorafenib, which were validated in two independent immunotherapy cohorts and the Genomics of Drug Sensitivity in Cancer (GDSC) database. Conclusion: We constructed a novel prognosis signature and identified B2M and SMOX for predicting immune and anti-angiogenic efficacy in HCC, which may guide the combined treatment strategies of immunotherapy and anti-angiogenic therapy in HCC. |
format | Online Article Text |
id | pubmed-9634552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96345522022-11-05 Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response Wang, Xiang-Xu Wu, Li-Hong Dou, Qiong-Yi Ai, Liping Lu, Yajie Deng, Shi-Zhou Liu, Qing-Qing Ji, Hongchen Zhang, Hong-Mei Front Mol Biosci Molecular Biosciences Background: Increasing evidence illustrated that m6A regulator-mediated modification plays a crucial role in regulating tumor immune and angiogenesis microenvironment. And the combination of immune checkpoint inhibitor and anti-angiogenic therapy has been approved as new first-line therapy for advanced HCC. This study constructed a novel prognosis signature base on m6A-mediated modification and explored the related mechanism in predicting immune and anti-angiogenic responses. Methods: Gene expression profiles and clinical information were collected from TCGA and GEO. The ssGSEA, MCPCOUNT, and TIMER 2.0 algorithm was used to Estimation of immune cell infiltration. The IC(50) of anti-angiogenic drugs in GDSC was calculated by the “pRRophetic” package. IMvigor210 cohort and Liu et al. cohort were used to validate the capability of immunotherapy response. Hepatocellular carcinoma single immune cells sequencing datasets GSE140228 were collected to present the expression landscapes of 5 hub genes in different sites and immune cell subpopulations of HCC patients. Results: Three m6A clusters with distinct immune and angiogenesis microenvironments were identified by consistent cluster analysis based on the expression of m6A regulators. We further constructed a 5-gene prognosis signature (termed as m6Asig-Score) which could predict both immune and anti-angiogenic responses. We illustrated that high m6Asig-Score is associated with poor prognosis, advanced TNM stage, and high TP53 mutation frequency. Besides, the m6Asig-Score was negatively associated with immune checkpoint inhibitors and anti-angiogenic drug response. We further found that two of the five m6Asig-Score inner genes, B2M and SMOX, were associated with immune cell infiltration, immune response, and the sensitivity to sorafenib, which were validated in two independent immunotherapy cohorts and the Genomics of Drug Sensitivity in Cancer (GDSC) database. Conclusion: We constructed a novel prognosis signature and identified B2M and SMOX for predicting immune and anti-angiogenic efficacy in HCC, which may guide the combined treatment strategies of immunotherapy and anti-angiogenic therapy in HCC. Frontiers Media S.A. 2022-10-21 /pmc/articles/PMC9634552/ /pubmed/36339715 http://dx.doi.org/10.3389/fmolb.2022.1034928 Text en Copyright © 2022 Wang, Wu, Dou, Ai, Lu, Deng, Liu, Ji and Zhang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Wang, Xiang-Xu Wu, Li-Hong Dou, Qiong-Yi Ai, Liping Lu, Yajie Deng, Shi-Zhou Liu, Qing-Qing Ji, Hongchen Zhang, Hong-Mei Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response |
title | Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response |
title_full | Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response |
title_fullStr | Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response |
title_full_unstemmed | Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response |
title_short | Construction of m6A-based prognosis signature and prediction for immune and anti-angiogenic response |
title_sort | construction of m6a-based prognosis signature and prediction for immune and anti-angiogenic response |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634552/ https://www.ncbi.nlm.nih.gov/pubmed/36339715 http://dx.doi.org/10.3389/fmolb.2022.1034928 |
work_keys_str_mv | AT wangxiangxu constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT wulihong constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT douqiongyi constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT ailiping constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT luyajie constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT dengshizhou constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT liuqingqing constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT jihongchen constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse AT zhanghongmei constructionofm6abasedprognosissignatureandpredictionforimmuneandantiangiogenicresponse |