Cargando…
Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease
Brain arteries are routinely imaged in the clinical setting by various modalities, e.g., time-of-flight magnetic resonance angiography (TOF-MRA). These imaging techniques have great potential for the diagnosis of cerebrovascular disease, disease progression, and response to treatment. Currently, how...
Autores principales: | Hilbert, Adam, Rieger, Jana, Madai, Vince I., Akay, Ela M., Aydin, Orhun U., Behland, Jonas, Khalil, Ahmed A., Galinovic, Ivana, Sobesky, Jan, Fiebach, Jochen, Livne, Michelle, Frey, Dietmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634733/ https://www.ncbi.nlm.nih.gov/pubmed/36341105 http://dx.doi.org/10.3389/fneur.2022.1000914 |
Ejemplares similares
-
BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease
por: Hilbert, Adam, et al.
Publicado: (2020) -
A precision medicine framework for personalized simulation of hemodynamics in cerebrovascular disease
por: Frey, Dietmar, et al.
Publicado: (2021) -
Personalised simulation of hemodynamics in cerebrovascular disease: lessons learned from a study of diagnostic accuracy
por: Behland, Jonas, et al.
Publicado: (2023) -
A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease
por: Livne, Michelle, et al.
Publicado: (2019) -
On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking
por: Aydin, Orhun Utku, et al.
Publicado: (2021)