Cargando…

Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))

OBJECTIVE: Timing for sexual intercourse is important in achieving pregnancy in natural menstrual cycles. Different methods of detecting the fertile window have been invented, among them luteinization hormone (LH) to predict ovulation and biphasic body basal temperature (BBT) to confirm ovulation re...

Descripción completa

Detalles Bibliográficos
Autores principales: Weiss, Gregor, Strohmayer, Karl, Koele, Werner, Reinschissler, Nina, Schenk, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634753/
https://www.ncbi.nlm.nih.gov/pubmed/36339517
http://dx.doi.org/10.3389/fdgth.2022.930010
_version_ 1784824565016297472
author Weiss, Gregor
Strohmayer, Karl
Koele, Werner
Reinschissler, Nina
Schenk, Michael
author_facet Weiss, Gregor
Strohmayer, Karl
Koele, Werner
Reinschissler, Nina
Schenk, Michael
author_sort Weiss, Gregor
collection PubMed
description OBJECTIVE: Timing for sexual intercourse is important in achieving pregnancy in natural menstrual cycles. Different methods of detecting the fertile window have been invented, among them luteinization hormone (LH) to predict ovulation and biphasic body basal temperature (BBT) to confirm ovulation retrospectively. The gold standard to detect ovulation in gynecology practice remains transvaginal ultrasonography in combination with serum progesterone. In this study we evaluated a wearable temperature sensing patch (femSense®) using continuous body temperature measurement to confirm ovulation and determine the end of the fertile window. METHODS: 96 participants received the femSense® system consisting of an adhesive axillary thermometer patch and a smartphone application, where patients were asked to document information about their previous 3 cycles. Based on the participants data, the app predicted the cycle length and the estimated day of ovulation. From these predictions, the most probable fertile window and the day for applying the patch were derived. Participants applied and activated the femSense® patch on the calculated date, from which the patch continuously recorded their body temperature throughout a period of up to 7 days to confirm ovulation. Patients documented their daily urinary LH test positivity, and a transvaginal ultrasound was performed on day cycle day 7, 10, 12 and 14/15 to investigate the growth of one dominant follicle. If a follicle reached 15 mm in diameter, an ultrasound examination was carried out every day consecutively until ovulation. On the day ovulation was detected, serum progesterone was measured to confirm the results of the ultrasound. The performance of femSense® was evaluated by comparing the day of ovulation confirmation with the results of ovulation prediction (LH test) and detection (transvaginal ultrasound). RESULTS: The femSense® system confirmed ovulation occurrence in 60 cases (81.1%) compared to 48 predicted cases (64.9%) with the LH test (p = 0.041). Subgroup analysis revealed a positive trend for the femSense® system of specific ovulation confirmation within the fertile window of 24 h after ovulation in 42 of 74 cases (56.8%). Cycle length, therapy method or infertility reason of the patient did not influence accuracy of the femSense® system. CONCLUSIONS: The femSense® system poses a promising alternative to the traditional BBT method and is a valuable surrogate marker to transvaginal ultrasound for confirmation of ovulation.
format Online
Article
Text
id pubmed-9634753
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-96347532022-11-05 Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®)) Weiss, Gregor Strohmayer, Karl Koele, Werner Reinschissler, Nina Schenk, Michael Front Digit Health Digital Health OBJECTIVE: Timing for sexual intercourse is important in achieving pregnancy in natural menstrual cycles. Different methods of detecting the fertile window have been invented, among them luteinization hormone (LH) to predict ovulation and biphasic body basal temperature (BBT) to confirm ovulation retrospectively. The gold standard to detect ovulation in gynecology practice remains transvaginal ultrasonography in combination with serum progesterone. In this study we evaluated a wearable temperature sensing patch (femSense®) using continuous body temperature measurement to confirm ovulation and determine the end of the fertile window. METHODS: 96 participants received the femSense® system consisting of an adhesive axillary thermometer patch and a smartphone application, where patients were asked to document information about their previous 3 cycles. Based on the participants data, the app predicted the cycle length and the estimated day of ovulation. From these predictions, the most probable fertile window and the day for applying the patch were derived. Participants applied and activated the femSense® patch on the calculated date, from which the patch continuously recorded their body temperature throughout a period of up to 7 days to confirm ovulation. Patients documented their daily urinary LH test positivity, and a transvaginal ultrasound was performed on day cycle day 7, 10, 12 and 14/15 to investigate the growth of one dominant follicle. If a follicle reached 15 mm in diameter, an ultrasound examination was carried out every day consecutively until ovulation. On the day ovulation was detected, serum progesterone was measured to confirm the results of the ultrasound. The performance of femSense® was evaluated by comparing the day of ovulation confirmation with the results of ovulation prediction (LH test) and detection (transvaginal ultrasound). RESULTS: The femSense® system confirmed ovulation occurrence in 60 cases (81.1%) compared to 48 predicted cases (64.9%) with the LH test (p = 0.041). Subgroup analysis revealed a positive trend for the femSense® system of specific ovulation confirmation within the fertile window of 24 h after ovulation in 42 of 74 cases (56.8%). Cycle length, therapy method or infertility reason of the patient did not influence accuracy of the femSense® system. CONCLUSIONS: The femSense® system poses a promising alternative to the traditional BBT method and is a valuable surrogate marker to transvaginal ultrasound for confirmation of ovulation. Frontiers Media S.A. 2022-09-19 /pmc/articles/PMC9634753/ /pubmed/36339517 http://dx.doi.org/10.3389/fdgth.2022.930010 Text en © 2022 Weiss, Strohmayer, Koele, Reinschissler and Schenk. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Digital Health
Weiss, Gregor
Strohmayer, Karl
Koele, Werner
Reinschissler, Nina
Schenk, Michael
Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))
title Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))
title_full Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))
title_fullStr Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))
title_full_unstemmed Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))
title_short Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense(®))
title_sort confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femsense(®))
topic Digital Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634753/
https://www.ncbi.nlm.nih.gov/pubmed/36339517
http://dx.doi.org/10.3389/fdgth.2022.930010
work_keys_str_mv AT weissgregor confirmationofhumanovulationinassistedreproductionusinganadhesiveaxillarythermometerfemsense
AT strohmayerkarl confirmationofhumanovulationinassistedreproductionusinganadhesiveaxillarythermometerfemsense
AT koelewerner confirmationofhumanovulationinassistedreproductionusinganadhesiveaxillarythermometerfemsense
AT reinschisslernina confirmationofhumanovulationinassistedreproductionusinganadhesiveaxillarythermometerfemsense
AT schenkmichael confirmationofhumanovulationinassistedreproductionusinganadhesiveaxillarythermometerfemsense