Cargando…
A wavelet-based VCG QRS loop boundaries and isoelectric coordinates detector
This paper deals with a wavelet-based algorithm for automatic detection of isoelectric coordinates of individual QRS loops of VCG record. Fiducial time instants of QRS peak, QRS onset, QRS end, and isoelectric PQ interval are evaluated on three VCG leads [Formula: see text] together with global QRS...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634758/ https://www.ncbi.nlm.nih.gov/pubmed/36338495 http://dx.doi.org/10.3389/fphys.2022.941827 |
Sumario: | This paper deals with a wavelet-based algorithm for automatic detection of isoelectric coordinates of individual QRS loops of VCG record. Fiducial time instants of QRS peak, QRS onset, QRS end, and isoelectric PQ interval are evaluated on three VCG leads [Formula: see text] together with global QRS boundaries of a record to spatiotemporal QRS loops alignment. The algorithm was developed and optimized on 161 VCG records of PTB diagnostic database of healthy control subjects (HC), patients with myocardial infarction (MI) and patients with bundle branch block (BBB) and validated on CSE multilead measurement database of 124 records of the same diagnostic groups. The QRS peak was evaluated correctly for all of 1,467 beats. QRS onset, QRS end were detected with standard deviation of 5,5 ms and 7,8 ms respectively from the referee annotation. The isoelectric 20 ms length PQ interval window was detected correctly between the P end and QRS onset for all the cases. The proposed algorithm complies the [Formula: see text] limits for the QRS onset and QRS end detection and provides comparable or better results to other well-known algorithms. The algorithm evaluates well a wide QRS based on automated wavelet scale switching. The designed multi-lead approach QRS loop detector accomplishes diagnostic VCG processing, aligned QRS loops imaging and it is suitable for beat-to-beat variability assessment and further automatic VCG classification. |
---|