Cargando…

A perspective on the molecular mechanism in the control of organ internal (IN) asymmetry during petal development

Floral zygomorphy (monosymmetry) is a key innovation in flowering plants and is related to the coevolution of plants and their animal pollinators. The molecular basis underlying floral zygomorphy has been analysed, and two regulatory pathways have been identified: one determines the dorsoventral (DV...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Qianxia, Ge, Liangfa, Ahmad, Sagheer, Luo, Da, Li, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634759/
https://www.ncbi.nlm.nih.gov/pubmed/36349080
http://dx.doi.org/10.1093/hr/uhac202
Descripción
Sumario:Floral zygomorphy (monosymmetry) is a key innovation in flowering plants and is related to the coevolution of plants and their animal pollinators. The molecular basis underlying floral zygomorphy has been analysed, and two regulatory pathways have been identified: one determines the dorsoventral (DV) asymmetry along the floral plan, and the other controls organ internal (IN) asymmetry during petal development. While strides have been made to understand the molecular mechanism controlling DV asymmetry, which mainly involves an interplay between TCP and MYB transcription factors, the molecular pathway regulating IN asymmetry remains largely unknown. In this review, we discuss what is known about regulators and the molecular pathway regulating IN asymmetry. Our analysis revealed that the regulation of IN asymmetry occurs at the cellular, tissue, and organ genesis levels during petal development and that the regulatory mechanism is likely integrated into different developmental paths, such as floral and root nodule development. Although the molecular regulation of IN asymmetry is not be a linear path, a key hub for the regulatory network could be vascular patterning during petal organogenesis.