Cargando…

The endoplasmic reticulum contributes to lysosomal tubulation/sorting driven by LRRK2

Lysosomes are dynamic organelles that can remodel their membrane as an adaptive response to various cell signaling events including membrane damage. Recently, we have discovered that damaged lysosomes form and sort tubules into moving vesicles. We named this process LYTL for LYsosomal Tubulation/sor...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonet-Ponce, Luis, Cookson, Mark R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634967/
https://www.ncbi.nlm.nih.gov/pubmed/36044336
http://dx.doi.org/10.1091/mbc.E22-04-0139
Descripción
Sumario:Lysosomes are dynamic organelles that can remodel their membrane as an adaptive response to various cell signaling events including membrane damage. Recently, we have discovered that damaged lysosomes form and sort tubules into moving vesicles. We named this process LYTL for LYsosomal Tubulation/sorting driven by LRRK2, as the Parkinson’s disease protein LRRK2 promotes tubulation by recruiting the motor adaptor protein JIP4 to lysosomes via phosphorylated RAB proteins. Here we use spinning-disk microscopy combined with superresolution to further characterize LYTL after membrane damage with LLOMe (l-leucyl-l-leucine methyl ester). We identified the endoplasmic reticulum (ER) colocalizing with sites of fission of lysosome-derived tubules. In addition, modifying the morphology of the ER by reducing ER tubules leads to a decrease in LYTL sorting, suggesting that contact with tubular ER is necessary for lysosomal membrane sorting. Given the central roles of LRRK2 and lysosomal biology in Parkinson’s disease, these discoveries are likely relevant to disease pathology and highlight interactions between organelles in this model.