Cargando…

A novel method for drug-target interaction prediction based on graph transformers model

BACKGROUND: Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hongmei, Guo, Fang, Du, Mengyan, Wang, Guishen, Cao, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635108/
https://www.ncbi.nlm.nih.gov/pubmed/36329406
http://dx.doi.org/10.1186/s12859-022-04812-w
Descripción
Sumario:BACKGROUND: Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target. RESULTS: We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction. CONCLUSIONS: This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.