Cargando…
A novel method for drug-target interaction prediction based on graph transformers model
BACKGROUND: Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target in...
Autores principales: | Wang, Hongmei, Guo, Fang, Du, Mengyan, Wang, Guishen, Cao, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635108/ https://www.ncbi.nlm.nih.gov/pubmed/36329406 http://dx.doi.org/10.1186/s12859-022-04812-w |
Ejemplares similares
-
A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
Graph–sequence attention and transformer for predicting drug–target affinity
por: Yan, Xiangfeng, et al.
Publicado: (2022) -
DACPGTN: Drug ATC Code Prediction Method Based on Graph Transformer Network for Drug Discovery
por: Yan, Chaokun, et al.
Publicado: (2022) -
MolTrans: Molecular Interaction Transformer for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023)