Cargando…
Exploring risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: construction of a novel population-based predictive model
BACKGROUND: Machine learning was a highly effective tool in model construction. We aim to establish a machine learning-based predictive model for predicting the cervical lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC). METHODS: We obtained data on PTMC from the SEER database,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635156/ https://www.ncbi.nlm.nih.gov/pubmed/36329470 http://dx.doi.org/10.1186/s12902-022-01186-1 |
Sumario: | BACKGROUND: Machine learning was a highly effective tool in model construction. We aim to establish a machine learning-based predictive model for predicting the cervical lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC). METHODS: We obtained data on PTMC from the SEER database, including 10 demographic and clinicopathological characteristics. Univariate and multivariate logistic regression (LR) analyses were applied to screen the risk factors for cervical LNM in PTMC. Risk factors with P < 0.05 in multivariate LR analysis were used as modeling variables. Five different machine learning (ML) algorithms including extreme gradient boosting (XGBoost), random forest (RF), adaptive boosting (AdaBoost), gaussian naive bayes (GNB) and multi-layer perceptron (MLP) and traditional regression analysis were used to construct the prediction model. Finally, the area under the receiver operating characteristic (AUROC) curve was used to compare the model performance. RESULTS: Through univariate and multivariate LR analysis, we screened out 9 independent risk factors most closely associated with cervical LNM in PTMC, including age, sex, race, marital status, region, histology, tumor size, and extrathyroidal extension (ETE) and multifocality. We used these risk factors to build an ML prediction model, in which the AUROC value of the XGBoost algorithm was higher than the other 4 ML algorithms and was the best ML model. We optimized the XGBoost algorithm through 10-fold cross-validation, and its best performance on the training set (AUROC: 0.809, 95%CI 0.800–0.818) was better than traditional LR analysis (AUROC: 0.780, 95%CI 0.772–0.787). CONCLUSIONS: ML algorithms have good predictive performance, especially the XGBoost algorithm. With the continuous development of artificial intelligence, ML algorithms have broad prospects in clinical prognosis prediction. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12902-022-01186-1. |
---|