Cargando…
Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas
Isocitrate dehydrogenase-mutant low-grade gliomas (IDHmut-LGG) grow slowly but frequently undergo malignant transformation, which eventually leads to premature death. Chemotherapy and radiotherapy treatments prolong survival, but can also induce genetic (or epigenetic) alterations involved in transf...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635454/ https://www.ncbi.nlm.nih.gov/pubmed/34333454 http://dx.doi.org/10.1158/0008-5472.CAN-21-0985 |
_version_ | 1784824720515923968 |
---|---|
author | Aoki, Kosuke Suzuki, Hiromichi Yamamoto, Takashi Yamamoto, Kimiyo N. Maeda, Sachi Okuno, Yusuke Ranjit, Melissa Motomura, Kazuya Ohka, Fumiharu Tanahashi, Kuniaki Hirano, Masaki Nishikawa, Tomohide Shimizu, Hiroyuki Kitano, Yotaro Yamaguchi, Junya Yamazaki, Shintaro Nakamura, Hideo Takahashi, Masamichi Narita, Yoshitaka Nakada, Mitsutoshi Deguchi, Shoichi Mizoguchi, Masahiro Momii, Yasutomo Muragaki, Yoshihiro Abe, Tatsuya Akimoto, Jiro Wakabayashi, Toshihiko Saito, Ryuta Ogawa, Seishi Haeno, Hiroshi Natsume, Atsushi |
author_facet | Aoki, Kosuke Suzuki, Hiromichi Yamamoto, Takashi Yamamoto, Kimiyo N. Maeda, Sachi Okuno, Yusuke Ranjit, Melissa Motomura, Kazuya Ohka, Fumiharu Tanahashi, Kuniaki Hirano, Masaki Nishikawa, Tomohide Shimizu, Hiroyuki Kitano, Yotaro Yamaguchi, Junya Yamazaki, Shintaro Nakamura, Hideo Takahashi, Masamichi Narita, Yoshitaka Nakada, Mitsutoshi Deguchi, Shoichi Mizoguchi, Masahiro Momii, Yasutomo Muragaki, Yoshihiro Abe, Tatsuya Akimoto, Jiro Wakabayashi, Toshihiko Saito, Ryuta Ogawa, Seishi Haeno, Hiroshi Natsume, Atsushi |
author_sort | Aoki, Kosuke |
collection | PubMed |
description | Isocitrate dehydrogenase-mutant low-grade gliomas (IDHmut-LGG) grow slowly but frequently undergo malignant transformation, which eventually leads to premature death. Chemotherapy and radiotherapy treatments prolong survival, but can also induce genetic (or epigenetic) alterations involved in transformation. Here, we developed a mathematical model of tumor progression based on serial tumor volume data and treatment history of 276 IDHmut-LGGs classified by chromosome 1p/19q codeletion (IDH(mut)/1p19q(codel) and IDH(mut)/1p19q(noncodel)) and performed genome-wide mutational analyses, including targeted sequencing and longitudinal whole-exome sequencing data. These analyses showed that tumor mutational burden correlated positively with malignant transformation rate, and chemotherapy and radiotherapy significantly suppressed tumor growth but increased malignant transformation rate per cell by 1.8 to 2.8 times compared with before treatment. This model revealed that prompt adjuvant chemoradiotherapy prolonged malignant transformation-free survival in small IDHmut-LGGs (≤ 50 cm(3)). Furthermore, optimal treatment differed according to genetic alterations for large IDHmut-LGGs (> 50 cm(3)); adjuvant therapies delayed malignant transformation in IDH(mut)/1p19q(noncodel) but often accelerated it in IDH(mut)/1p19q(codel). Notably, PI3K mutation was not associated with malignant transformation but increased net postoperative proliferation rate and decreased malignant transformation-free survival, prompting the need for adjuvant therapy in IDH(mut)/1p19q(codel). Overall, this model uncovered therapeutic strategies that could prevent malignant transformation and, consequently, improve overall survival in patients with IDHmut-LGGs. SIGNIFICANCE: A mathematical model successfully estimates malignant transformation-free survival and reveals a link between genetic alterations and progression, identifying precision medicine approaches for optimal treatment of IDH-mutant low-grade gliomas. |
format | Online Article Text |
id | pubmed-9635454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-96354542023-01-05 Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas Aoki, Kosuke Suzuki, Hiromichi Yamamoto, Takashi Yamamoto, Kimiyo N. Maeda, Sachi Okuno, Yusuke Ranjit, Melissa Motomura, Kazuya Ohka, Fumiharu Tanahashi, Kuniaki Hirano, Masaki Nishikawa, Tomohide Shimizu, Hiroyuki Kitano, Yotaro Yamaguchi, Junya Yamazaki, Shintaro Nakamura, Hideo Takahashi, Masamichi Narita, Yoshitaka Nakada, Mitsutoshi Deguchi, Shoichi Mizoguchi, Masahiro Momii, Yasutomo Muragaki, Yoshihiro Abe, Tatsuya Akimoto, Jiro Wakabayashi, Toshihiko Saito, Ryuta Ogawa, Seishi Haeno, Hiroshi Natsume, Atsushi Cancer Res Convergence and Technologies Isocitrate dehydrogenase-mutant low-grade gliomas (IDHmut-LGG) grow slowly but frequently undergo malignant transformation, which eventually leads to premature death. Chemotherapy and radiotherapy treatments prolong survival, but can also induce genetic (or epigenetic) alterations involved in transformation. Here, we developed a mathematical model of tumor progression based on serial tumor volume data and treatment history of 276 IDHmut-LGGs classified by chromosome 1p/19q codeletion (IDH(mut)/1p19q(codel) and IDH(mut)/1p19q(noncodel)) and performed genome-wide mutational analyses, including targeted sequencing and longitudinal whole-exome sequencing data. These analyses showed that tumor mutational burden correlated positively with malignant transformation rate, and chemotherapy and radiotherapy significantly suppressed tumor growth but increased malignant transformation rate per cell by 1.8 to 2.8 times compared with before treatment. This model revealed that prompt adjuvant chemoradiotherapy prolonged malignant transformation-free survival in small IDHmut-LGGs (≤ 50 cm(3)). Furthermore, optimal treatment differed according to genetic alterations for large IDHmut-LGGs (> 50 cm(3)); adjuvant therapies delayed malignant transformation in IDH(mut)/1p19q(noncodel) but often accelerated it in IDH(mut)/1p19q(codel). Notably, PI3K mutation was not associated with malignant transformation but increased net postoperative proliferation rate and decreased malignant transformation-free survival, prompting the need for adjuvant therapy in IDH(mut)/1p19q(codel). Overall, this model uncovered therapeutic strategies that could prevent malignant transformation and, consequently, improve overall survival in patients with IDHmut-LGGs. SIGNIFICANCE: A mathematical model successfully estimates malignant transformation-free survival and reveals a link between genetic alterations and progression, identifying precision medicine approaches for optimal treatment of IDH-mutant low-grade gliomas. American Association for Cancer Research 2021-09-15 2021-07-31 /pmc/articles/PMC9635454/ /pubmed/34333454 http://dx.doi.org/10.1158/0008-5472.CAN-21-0985 Text en ©2021 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
spellingShingle | Convergence and Technologies Aoki, Kosuke Suzuki, Hiromichi Yamamoto, Takashi Yamamoto, Kimiyo N. Maeda, Sachi Okuno, Yusuke Ranjit, Melissa Motomura, Kazuya Ohka, Fumiharu Tanahashi, Kuniaki Hirano, Masaki Nishikawa, Tomohide Shimizu, Hiroyuki Kitano, Yotaro Yamaguchi, Junya Yamazaki, Shintaro Nakamura, Hideo Takahashi, Masamichi Narita, Yoshitaka Nakada, Mitsutoshi Deguchi, Shoichi Mizoguchi, Masahiro Momii, Yasutomo Muragaki, Yoshihiro Abe, Tatsuya Akimoto, Jiro Wakabayashi, Toshihiko Saito, Ryuta Ogawa, Seishi Haeno, Hiroshi Natsume, Atsushi Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas |
title | Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas |
title_full | Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas |
title_fullStr | Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas |
title_full_unstemmed | Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas |
title_short | Mathematical Modeling and Mutational Analysis Reveal Optimal Therapy to Prevent Malignant Transformation in Grade II IDH-Mutant Gliomas |
title_sort | mathematical modeling and mutational analysis reveal optimal therapy to prevent malignant transformation in grade ii idh-mutant gliomas |
topic | Convergence and Technologies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635454/ https://www.ncbi.nlm.nih.gov/pubmed/34333454 http://dx.doi.org/10.1158/0008-5472.CAN-21-0985 |
work_keys_str_mv | AT aokikosuke mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT suzukihiromichi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT yamamototakashi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT yamamotokimiyon mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT maedasachi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT okunoyusuke mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT ranjitmelissa mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT motomurakazuya mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT ohkafumiharu mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT tanahashikuniaki mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT hiranomasaki mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT nishikawatomohide mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT shimizuhiroyuki mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT kitanoyotaro mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT yamaguchijunya mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT yamazakishintaro mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT nakamurahideo mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT takahashimasamichi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT naritayoshitaka mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT nakadamitsutoshi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT deguchishoichi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT mizoguchimasahiro mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT momiiyasutomo mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT muragakiyoshihiro mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT abetatsuya mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT akimotojiro mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT wakabayashitoshihiko mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT saitoryuta mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT ogawaseishi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT haenohiroshi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas AT natsumeatsushi mathematicalmodelingandmutationalanalysisrevealoptimaltherapytopreventmalignanttransformationingradeiiidhmutantgliomas |