Cargando…
NESM: a network embedding method for tumor stratification by integrating multi-omics data
Tumor stratification plays an important role in cancer diagnosis and individualized treatment. Recent developments in high-throughput sequencing technologies have produced huge amounts of multi-omics data, making it possible to stratify cancer types using multiple molecular datasets. We introduce a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635646/ https://www.ncbi.nlm.nih.gov/pubmed/36124952 http://dx.doi.org/10.1093/g3journal/jkac243 |
_version_ | 1784824753857495040 |
---|---|
author | Li, Feng Sun, Zhensheng Liu, Jin-Xing Shang, Junliang Dai, Lingyun Liu, Xikui Li, Yan |
author_facet | Li, Feng Sun, Zhensheng Liu, Jin-Xing Shang, Junliang Dai, Lingyun Liu, Xikui Li, Yan |
author_sort | Li, Feng |
collection | PubMed |
description | Tumor stratification plays an important role in cancer diagnosis and individualized treatment. Recent developments in high-throughput sequencing technologies have produced huge amounts of multi-omics data, making it possible to stratify cancer types using multiple molecular datasets. We introduce a Network Embedding method for tumor Stratification by integrating Multi-omics data. Network Embedding method for tumor Stratification by integrating Multi-omics pregroup the samples, integrate the gene features and somatic mutation corresponding to cancer types within each group to construct patient features, and then integrate all groups to obtain comprehensive patient information. The gene features contain network topology information, because it is extracted by integrating deoxyribonucleic acid methylation, messenger ribonucleic acid expression data, and protein–protein interactions through network embedding method. On the one hand, a supervised learning method Light Gradient Boosting Machine is used to classify cancer types based on patient features. When compared with other 3 methods, Network Embedding method for tumor Stratification by integrating Multi-omics has the highest AUC in most cancer types. The average AUC for stratifying cancer types is 0.91, indicating that the patient features extracted by Network Embedding method for tumor Stratification by integrating Multi-omics are effective for tumor stratification. On the other hand, an unsupervised clustering algorithm Density-Based Spatial Clustering of Applications with Noise is utilized to divide single cancer subtypes. The vast majority of the subtypes identified by Network Embedding method for tumor Stratification by integrating Multi-omics are significantly associated with patient survival. |
format | Online Article Text |
id | pubmed-9635646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96356462022-11-07 NESM: a network embedding method for tumor stratification by integrating multi-omics data Li, Feng Sun, Zhensheng Liu, Jin-Xing Shang, Junliang Dai, Lingyun Liu, Xikui Li, Yan G3 (Bethesda) Investigation Tumor stratification plays an important role in cancer diagnosis and individualized treatment. Recent developments in high-throughput sequencing technologies have produced huge amounts of multi-omics data, making it possible to stratify cancer types using multiple molecular datasets. We introduce a Network Embedding method for tumor Stratification by integrating Multi-omics data. Network Embedding method for tumor Stratification by integrating Multi-omics pregroup the samples, integrate the gene features and somatic mutation corresponding to cancer types within each group to construct patient features, and then integrate all groups to obtain comprehensive patient information. The gene features contain network topology information, because it is extracted by integrating deoxyribonucleic acid methylation, messenger ribonucleic acid expression data, and protein–protein interactions through network embedding method. On the one hand, a supervised learning method Light Gradient Boosting Machine is used to classify cancer types based on patient features. When compared with other 3 methods, Network Embedding method for tumor Stratification by integrating Multi-omics has the highest AUC in most cancer types. The average AUC for stratifying cancer types is 0.91, indicating that the patient features extracted by Network Embedding method for tumor Stratification by integrating Multi-omics are effective for tumor stratification. On the other hand, an unsupervised clustering algorithm Density-Based Spatial Clustering of Applications with Noise is utilized to divide single cancer subtypes. The vast majority of the subtypes identified by Network Embedding method for tumor Stratification by integrating Multi-omics are significantly associated with patient survival. Oxford University Press 2022-09-19 /pmc/articles/PMC9635646/ /pubmed/36124952 http://dx.doi.org/10.1093/g3journal/jkac243 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigation Li, Feng Sun, Zhensheng Liu, Jin-Xing Shang, Junliang Dai, Lingyun Liu, Xikui Li, Yan NESM: a network embedding method for tumor stratification by integrating multi-omics data |
title | NESM: a network embedding method for tumor stratification by integrating multi-omics data |
title_full | NESM: a network embedding method for tumor stratification by integrating multi-omics data |
title_fullStr | NESM: a network embedding method for tumor stratification by integrating multi-omics data |
title_full_unstemmed | NESM: a network embedding method for tumor stratification by integrating multi-omics data |
title_short | NESM: a network embedding method for tumor stratification by integrating multi-omics data |
title_sort | nesm: a network embedding method for tumor stratification by integrating multi-omics data |
topic | Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635646/ https://www.ncbi.nlm.nih.gov/pubmed/36124952 http://dx.doi.org/10.1093/g3journal/jkac243 |
work_keys_str_mv | AT lifeng nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata AT sunzhensheng nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata AT liujinxing nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata AT shangjunliang nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata AT dailingyun nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata AT liuxikui nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata AT liyan nesmanetworkembeddingmethodfortumorstratificationbyintegratingmultiomicsdata |