Cargando…
NESM: a network embedding method for tumor stratification by integrating multi-omics data
Tumor stratification plays an important role in cancer diagnosis and individualized treatment. Recent developments in high-throughput sequencing technologies have produced huge amounts of multi-omics data, making it possible to stratify cancer types using multiple molecular datasets. We introduce a...
Autores principales: | Li, Feng, Sun, Zhensheng, Liu, Jin-Xing, Shang, Junliang, Dai, Lingyun, Liu, Xikui, Li, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635646/ https://www.ncbi.nlm.nih.gov/pubmed/36124952 http://dx.doi.org/10.1093/g3journal/jkac243 |
Ejemplares similares
-
NEXGB: A Network Embedding Framework for Anticancer Drug Combination Prediction
por: Meng, Fanjie, et al.
Publicado: (2022) -
Network embedding framework for driver gene discovery by combining functional and structural information
por: Chu, Xin, et al.
Publicado: (2023) -
Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms
por: Li, Feng, et al.
Publicado: (2022) -
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023) -
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023)