Cargando…
learnMET: an R package to apply machine learning methods for genomic prediction using multi-environment trial data
We introduce the R-package learnMET, developed as a flexible framework to enable a collection of analyses on multi-environment trial breeding data with machine learning-based models. learnMET allows the combination of genomic information with environmental data such as climate and/or soil characteri...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635651/ https://www.ncbi.nlm.nih.gov/pubmed/36124944 http://dx.doi.org/10.1093/g3journal/jkac226 |
Sumario: | We introduce the R-package learnMET, developed as a flexible framework to enable a collection of analyses on multi-environment trial breeding data with machine learning-based models. learnMET allows the combination of genomic information with environmental data such as climate and/or soil characteristics. Notably, the package offers the possibility of incorporating weather data from field weather stations, or to retrieve global meteorological datasets from a NASA database. Daily weather data can be aggregated over specific periods of time based on naive (for instance, nonoverlapping 10-day windows) or phenological approaches. Different machine learning methods for genomic prediction are implemented, including gradient-boosted decision trees, random forests, stacked ensemble models, and multilayer perceptrons. These prediction models can be evaluated via a collection of cross-validation schemes that mimic typical scenarios encountered by plant breeders working with multi-environment trial experimental data in a user-friendly way. The package is published under an MIT license and accessible on GitHub. |
---|