Cargando…
Iterative deep neural networks based on proximal gradient descent for image restoration
The algorithm unfolding networks with explainability of algorithms and higher efficiency of Deep Neural Networks (DNN) have received considerable attention in solving ill-posed inverse problems. Under the algorithm unfolding network framework, we propose a novel end-to-end iterative deep neural netw...
Autores principales: | Lv, Ting, Pan, Zhenkuan, Wei, Weibo, Yang, Guangyu, Song, Jintao, Wang, Xuqing, Sun, Lu, Li, Qian, Sun, Xiatao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635693/ https://www.ncbi.nlm.nih.gov/pubmed/36331931 http://dx.doi.org/10.1371/journal.pone.0276373 |
Ejemplares similares
-
On Scalable Deep Learning and Parallelizing Gradient Descent
por: Hermans, Joeri
Publicado: (2017) -
Complexity control by gradient descent in deep networks
por: Poggio, Tomaso, et al.
Publicado: (2020) -
Two-step proximal gradient descent algorithm for photoacoustic signal unmixing
por: Qu, Zheng, et al.
Publicado: (2022) -
Direct Multi-Material Reconstruction via Iterative Proximal Adaptive Descent for Spectral CT Imaging
por: Yu, Xiaohuan, et al.
Publicado: (2023) -
New dual method for elastica regularization
por: Song, Jintao, et al.
Publicado: (2022)