Cargando…

CT vs. bioluminescence: A comparison of imaging techniques for orthotopic prostate tumors in mice

Prostate cancer is one of the most diagnosed cancers in men in the United States. In mouse models, orthotopic tumors are favored for their biological relevance and simulation of growth in a microenvironment akin to that found in humans. However, to monitor the disease course, animal models require c...

Descripción completa

Detalles Bibliográficos
Autores principales: Myers, Molly S., Kosmacek, Elizabeth A., Chatterjee, Arpita, E. Oberley-Deegan, Rebecca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635695/
https://www.ncbi.nlm.nih.gov/pubmed/36331948
http://dx.doi.org/10.1371/journal.pone.0277239
Descripción
Sumario:Prostate cancer is one of the most diagnosed cancers in men in the United States. In mouse models, orthotopic tumors are favored for their biological relevance and simulation of growth in a microenvironment akin to that found in humans. However, to monitor the disease course, animal models require consistent and noninvasive surveillance. In vivo bioluminescent imaging has become a mainstay imaging modality due to its flexibility and ease of use. However, with some orthotopic prostate tumor models, bioluminescence fails to describe disease progression due to optical scattering and signal attenuation. CT scanning, in addition to its utility in human cancer diagnosis and surveillance, can be applied to mouse models with improved results. However, CT imaging has poor definition when imaging soft tissues and is not routinely used in prostate cancer models. Using an orthotopic prostate cancer model, our results demonstrate that, when compared to bioluminescent imaging, CT imaging correlates more closely to orthotopic prostate tumor growth in mice. Based on the data from this study, we conclude that CT imaging can be used as an alternative to the more commonly used bioluminescent imaging for measuring orthotopic prostate cancer growth over time.