Cargando…
Robust large-scale clustering based on correntropy
With the explosive growth of data, how to efficiently cluster large-scale unlabeled data has become an important issue that needs to be solved urgently. Especially in the face of large-scale real-world data, which contains a large number of complex distributions of noises and outliers, the research...
Autores principales: | Jin, Guodong, Gao, Jing, Tan, Lining |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635755/ https://www.ncbi.nlm.nih.gov/pubmed/36331916 http://dx.doi.org/10.1371/journal.pone.0277012 |
Ejemplares similares
-
Non-negative matrix factorization by maximizing correntropy for cancer clustering
por: Wang, Jim Jing-Yan, et al.
Publicado: (2013) -
Partial maximum correntropy regression for robust electrocorticography decoding
por: Li, Yuanhao, et al.
Publicado: (2023) -
Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection
por: Qi, Yu, et al.
Publicado: (2014) -
Evolved-Cooperative Correntropy-Based Extreme Learning Machine for Robust Prediction
por: Mei, Wenjuan, et al.
Publicado: (2019) -
Correntropy-Induced Discriminative Nonnegative Sparse Coding for Robust Palmprint Recognition
por: Jing, Kunlei, et al.
Publicado: (2020)