Cargando…

Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs

Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously “bridge” missing nerve segments and “bab...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Douglas H., Burrell, Justin C., Browne, Kevin D., Katiyar, Kritika S., Ezra, Mindy I., Dutton, John L., Morand, Joseph P., Struzyna, Laura A., Laimo, Franco A., Chen, H. Isaac, Wolf, John A., Kaplan, Hilton M., Rosen, Joseph M., Ledebur, Harry C., Zager, Eric L., Ali, Zarina S., Cullen, D. Kacy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635828/
https://www.ncbi.nlm.nih.gov/pubmed/36332027
http://dx.doi.org/10.1126/sciadv.abm3291
_version_ 1784824797572628480
author Smith, Douglas H.
Burrell, Justin C.
Browne, Kevin D.
Katiyar, Kritika S.
Ezra, Mindy I.
Dutton, John L.
Morand, Joseph P.
Struzyna, Laura A.
Laimo, Franco A.
Chen, H. Isaac
Wolf, John A.
Kaplan, Hilton M.
Rosen, Joseph M.
Ledebur, Harry C.
Zager, Eric L.
Ali, Zarina S.
Cullen, D. Kacy
author_facet Smith, Douglas H.
Burrell, Justin C.
Browne, Kevin D.
Katiyar, Kritika S.
Ezra, Mindy I.
Dutton, John L.
Morand, Joseph P.
Struzyna, Laura A.
Laimo, Franco A.
Chen, H. Isaac
Wolf, John A.
Kaplan, Hilton M.
Rosen, Joseph M.
Ledebur, Harry C.
Zager, Eric L.
Ali, Zarina S.
Cullen, D. Kacy
author_sort Smith, Douglas H.
collection PubMed
description Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously “bridge” missing nerve segments and “babysit” regenerative capacity by providing living axons to guide host axons and maintain the distal pathway. TENGs were biofabricated using porcine neurons and “stretch-grown” axon tracts. TENG neurons survived and elicited axon-facilitated axon regeneration to accelerate regrowth across both short (1 cm) and long (5 cm) segmental nerve defects in pigs. TENG axons also closely interacted with host Schwann cells to maintain proregenerative capacity. TENGs drove regeneration across 5-cm defects in both motor and mixed motor-sensory nerves, resulting in dense axon regeneration and electrophysiological recovery at levels similar to autograft repairs. This approach of accelerating axon regeneration while maintaining the pathway for long-distance regeneration may achieve recovery after currently unrepairable PNIs.
format Online
Article
Text
id pubmed-9635828
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-96358282022-11-18 Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs Smith, Douglas H. Burrell, Justin C. Browne, Kevin D. Katiyar, Kritika S. Ezra, Mindy I. Dutton, John L. Morand, Joseph P. Struzyna, Laura A. Laimo, Franco A. Chen, H. Isaac Wolf, John A. Kaplan, Hilton M. Rosen, Joseph M. Ledebur, Harry C. Zager, Eric L. Ali, Zarina S. Cullen, D. Kacy Sci Adv Biomedicine and Life Sciences Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously “bridge” missing nerve segments and “babysit” regenerative capacity by providing living axons to guide host axons and maintain the distal pathway. TENGs were biofabricated using porcine neurons and “stretch-grown” axon tracts. TENG neurons survived and elicited axon-facilitated axon regeneration to accelerate regrowth across both short (1 cm) and long (5 cm) segmental nerve defects in pigs. TENG axons also closely interacted with host Schwann cells to maintain proregenerative capacity. TENGs drove regeneration across 5-cm defects in both motor and mixed motor-sensory nerves, resulting in dense axon regeneration and electrophysiological recovery at levels similar to autograft repairs. This approach of accelerating axon regeneration while maintaining the pathway for long-distance regeneration may achieve recovery after currently unrepairable PNIs. American Association for the Advancement of Science 2022-11-04 /pmc/articles/PMC9635828/ /pubmed/36332027 http://dx.doi.org/10.1126/sciadv.abm3291 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Smith, Douglas H.
Burrell, Justin C.
Browne, Kevin D.
Katiyar, Kritika S.
Ezra, Mindy I.
Dutton, John L.
Morand, Joseph P.
Struzyna, Laura A.
Laimo, Franco A.
Chen, H. Isaac
Wolf, John A.
Kaplan, Hilton M.
Rosen, Joseph M.
Ledebur, Harry C.
Zager, Eric L.
Ali, Zarina S.
Cullen, D. Kacy
Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
title Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
title_full Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
title_fullStr Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
title_full_unstemmed Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
title_short Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
title_sort tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635828/
https://www.ncbi.nlm.nih.gov/pubmed/36332027
http://dx.doi.org/10.1126/sciadv.abm3291
work_keys_str_mv AT smithdouglash tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT burrelljustinc tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT brownekevind tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT katiyarkritikas tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT ezramindyi tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT duttonjohnl tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT morandjosephp tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT struzynalauraa tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT laimofrancoa tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT chenhisaac tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT wolfjohna tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT kaplanhiltonm tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT rosenjosephm tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT ledeburharryc tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT zagerericl tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT alizarinas tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs
AT cullendkacy tissueengineeredgraftsexploitaxonfacilitatedaxonregenerationandpathwayprotectiontoenablerecoveryafter5cmnervedefectsinpigs