Cargando…
The interpretation of computational model parameters depends on the context
Reinforcement Learning (RL) models have revolutionized the cognitive and brain sciences, promising to explain behavior from simple conditioning to complex problem solving, to shed light on developmental and individual differences, and to anchor cognitive processes in specific brain mechanisms. Howev...
Autores principales: | Eckstein, Maria Katharina, Master, Sarah L, Xia, Liyu, Dahl, Ronald E, Wilbrecht, Linda, Collins, Anne GE |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635876/ https://www.ncbi.nlm.nih.gov/pubmed/36331872 http://dx.doi.org/10.7554/eLife.75474 |
Ejemplares similares
-
Modeling changes in probabilistic reinforcement learning during adolescence
por: Xia, Liyu, et al.
Publicado: (2021) -
Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal
por: Eckstein, Maria K., et al.
Publicado: (2022) -
Distentangling the systems contributing to changes in learning during adolescence
por: Master, Sarah L., et al.
Publicado: (2019) -
Evolving interpretable plasticity for spiking networks
por: Jordan, Jakob, et al.
Publicado: (2021) -
Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
por: Großeholz, Ruth, et al.
Publicado: (2022)