Cargando…
Improved AlphaFold modeling with implicit experimental information
Machine-learning prediction algorithms such as AlphaFold and RoseTTAFold can create remarkably accurate protein models, but these models usually have some regions that are predicted with low confidence or poor accuracy. We hypothesized that by implicitly including new experimental information such a...
Autores principales: | Terwilliger, Thomas C., Poon, Billy K., Afonine, Pavel V., Schlicksup, Christopher J., Croll, Tristan I., Millán, Claudia, Richardson, Jane. S., Read, Randy J., Adams, Paul D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636017/ https://www.ncbi.nlm.nih.gov/pubmed/36266465 http://dx.doi.org/10.1038/s41592-022-01645-6 |
Ejemplares similares
-
Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE
por: Oeffner, Robert D., et al.
Publicado: (2022) -
Accelerating crystal structure determination with iterative AlphaFold prediction
por: Terwilliger, Thomas C., et al.
Publicado: (2023) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Implications of AlphaFold2 for crystallographic phasing by molecular replacement
por: McCoy, Airlie J., et al.
Publicado: (2022) -
The impact of AlphaFold2 on experimental structure solution
por: Edich, Maximilian, et al.
Publicado: (2022)