Cargando…
SyConn2: dense synaptic connectivity inference for volume electron microscopy
The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636020/ https://www.ncbi.nlm.nih.gov/pubmed/36280715 http://dx.doi.org/10.1038/s41592-022-01624-x |
_version_ | 1784824843175198720 |
---|---|
author | Schubert, Philipp J. Dorkenwald, Sven Januszewski, Michał Klimesch, Jonathan Svara, Fabian Mancu, Andrei Ahmad, Hashir Fee, Michale S. Jain, Viren Kornfeld, Joergen |
author_facet | Schubert, Philipp J. Dorkenwald, Sven Januszewski, Michał Klimesch, Jonathan Svara, Fabian Mancu, Andrei Ahmad, Hashir Fee, Michale S. Jain, Viren Kornfeld, Joergen |
author_sort | Schubert, Philipp J. |
collection | PubMed |
description | The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute environments and rentable cloud computing clusters. SyConn2 was tested on connectomic datasets with more than 10 million synapses, provides a web-based visualization interface and makes these data amenable to complex anatomical and neuronal connectivity queries. |
format | Online Article Text |
id | pubmed-9636020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-96360202022-11-06 SyConn2: dense synaptic connectivity inference for volume electron microscopy Schubert, Philipp J. Dorkenwald, Sven Januszewski, Michał Klimesch, Jonathan Svara, Fabian Mancu, Andrei Ahmad, Hashir Fee, Michale S. Jain, Viren Kornfeld, Joergen Nat Methods Brief Communication The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute environments and rentable cloud computing clusters. SyConn2 was tested on connectomic datasets with more than 10 million synapses, provides a web-based visualization interface and makes these data amenable to complex anatomical and neuronal connectivity queries. Nature Publishing Group US 2022-10-24 2022 /pmc/articles/PMC9636020/ /pubmed/36280715 http://dx.doi.org/10.1038/s41592-022-01624-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Brief Communication Schubert, Philipp J. Dorkenwald, Sven Januszewski, Michał Klimesch, Jonathan Svara, Fabian Mancu, Andrei Ahmad, Hashir Fee, Michale S. Jain, Viren Kornfeld, Joergen SyConn2: dense synaptic connectivity inference for volume electron microscopy |
title | SyConn2: dense synaptic connectivity inference for volume electron microscopy |
title_full | SyConn2: dense synaptic connectivity inference for volume electron microscopy |
title_fullStr | SyConn2: dense synaptic connectivity inference for volume electron microscopy |
title_full_unstemmed | SyConn2: dense synaptic connectivity inference for volume electron microscopy |
title_short | SyConn2: dense synaptic connectivity inference for volume electron microscopy |
title_sort | syconn2: dense synaptic connectivity inference for volume electron microscopy |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636020/ https://www.ncbi.nlm.nih.gov/pubmed/36280715 http://dx.doi.org/10.1038/s41592-022-01624-x |
work_keys_str_mv | AT schubertphilippj syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT dorkenwaldsven syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT januszewskimichał syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT klimeschjonathan syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT svarafabian syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT mancuandrei syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT ahmadhashir syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT feemichales syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT jainviren syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy AT kornfeldjoergen syconn2densesynapticconnectivityinferenceforvolumeelectronmicroscopy |