Cargando…
SyConn2: dense synaptic connectivity inference for volume electron microscopy
The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute...
Autores principales: | Schubert, Philipp J., Dorkenwald, Sven, Januszewski, Michał, Klimesch, Jonathan, Svara, Fabian, Mancu, Andrei, Ahmad, Hashir, Fee, Michale S., Jain, Viren, Kornfeld, Joergen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636020/ https://www.ncbi.nlm.nih.gov/pubmed/36280715 http://dx.doi.org/10.1038/s41592-022-01624-x |
Ejemplares similares
-
Learning cellular morphology with neural networks
por: Schubert, Philipp J., et al.
Publicado: (2019) -
StemCONN: Realizing the Promise: StemConn 2013
por: Schmidt, Barbara
Publicado: (2013) -
Support for a synaptic chain model of neuronal sequence generation
por: Long, Michael A., et al.
Publicado: (2010) -
Introduction to the baum-connes conjecture
por: Valette, Alain
Publicado: (2002) -
Conned by Conn’s: The Manifestation of Conn’s Syndrome Post-renal Transplant in a Patient with Polycystic Kidney Disease
por: Rojulpote, Chaitanya, et al.
Publicado: (2020)