Cargando…

Construction and performance analysis of a solar thermophotovoltaic system targeting on the efficient utilization of AM0 space solar radiation

Solar thermophotovoltaic (STPV) has great potential as efficient power supply source for spacecraft to meet the demand of spacecraft miniaturization. In this work, a novel space STPV system is proposed to achieve the efficient utilization of the AM0 space solar radiation. Metamaterial structures wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Binghong, Shan, Shiquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636058/
https://www.ncbi.nlm.nih.gov/pubmed/36345332
http://dx.doi.org/10.1016/j.isci.2022.105373
Descripción
Sumario:Solar thermophotovoltaic (STPV) has great potential as efficient power supply source for spacecraft to meet the demand of spacecraft miniaturization. In this work, a novel space STPV system is proposed to achieve the efficient utilization of the AM0 space solar radiation. Metamaterial structures were designed and FDTD method is used to analyze their radiation regulation mechanism. A multi-layer cylindrical periodic structure is used as the absorber which realizes a total absorptance of 0.9283 to AM0 radiation. A cylindrical periodic structure is used as the emitter to reshape the broadband thermal radiation as narrowband to match with the Si/InGaAsSb tandem cell, which realizes a highest TPV efficiency of 51.36%. System performance analysis is conducted and the system presents a highest STPV efficiency of 40.86% and good adaptability under wide range of operating parameters, which reveals its great potential to realize the efficient utilization of AM0 solar radiation for space power supply.