Cargando…
Machine Learning Algorithms for Predicting Surgical Outcomes after Colorectal Surgery: A Systematic Review
BACKGROUND: Machine learning (ML) has been introduced in various fields of healthcare. In colorectal surgery, the role of ML has yet to be reported. In this systematic review, an overview of machine learning models predicting surgical outcomes after colorectal surgery is provided. METHODS: Databases...
Autores principales: | Bektaş, Mustafa, Tuynman, Jurriaan B., Costa Pereira, Jaime, Burchell, George L., van der Peet, Donald L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636121/ https://www.ncbi.nlm.nih.gov/pubmed/36109367 http://dx.doi.org/10.1007/s00268-022-06728-1 |
Ejemplares similares
-
Machine learning applications in upper gastrointestinal cancer surgery: a systematic review
por: Bektaş, Mustafa, et al.
Publicado: (2022) -
Artificial Intelligence in Bariatric Surgery: Current Status and Future Perspectives
por: Bektaş, Mustafa, et al.
Publicado: (2022) -
C-reactive protein in predicting major postoperative complications are there differences in open and minimally invasive colorectal surgery? Substudy from a randomized clinical trial
por: Straatman, Jennifer, et al.
Publicado: (2017) -
CR-POSSUM and Surgical Apgar Score as predictive factors for patients’ allocation after colorectal surgery
por: Pinho, Sílvia, et al.
Publicado: (2018) -
Delphi Consensus on Intraoperative Technical/Surgical Aspects to Prevent Surgical Site Infection after Colorectal Surgery
por: Ruiz-Tovar, Jaime, et al.
Publicado: (2022)