Cargando…
Ultrafast inactivation of SARS-CoV-2 with 266 nm lasers
Disinfection eliminates pathogenic microorganisms and ensures a biosafe environment for human beings. The rapid spread of COVID-19 is challenging traditional disinfection methods in terms of reducing harmful side effects and conducting faster processes. Spraying large-scale chemical disinfectants is...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636154/ https://www.ncbi.nlm.nih.gov/pubmed/36333440 http://dx.doi.org/10.1038/s41598-022-23423-2 |
Sumario: | Disinfection eliminates pathogenic microorganisms and ensures a biosafe environment for human beings. The rapid spread of COVID-19 is challenging traditional disinfection methods in terms of reducing harmful side effects and conducting faster processes. Spraying large-scale chemical disinfectants is harmful to individuals and the environment, while UV lamp and light-emitting diode (LED) disinfection still requires a long exposure time due to the low irradiance and highly divergent beam characteristics. Given that a laser maintains a high irradiance over a long distance, we studied the effectiveness of lasers as a new disinfection method, and the results show the capability for ultrafast inactivation of SARS-CoV-2 virus with a 266 nm laser. This work confirms UV lasers as a good candidate for disinfection. |
---|