Cargando…

Modulation of mouse laryngeal inflammatory and immune cell responses by low and high doses of mainstream cigarette smoke

Cigarette smoking is a major risk factor for laryngeal diseases. Despite well-documented cigarette smoke (CS) induced laryngeal histopathological changes, the underlying immunopathological mechanisms remain largely unexplored. The goal of this study was to evaluate inflammatory and immune cell respo...

Descripción completa

Detalles Bibliográficos
Autores principales: Easwaran, Meena, Martinez, Joshua D., Kim, Juyong Brian, Erickson-DiRenzo, Elizabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636197/
https://www.ncbi.nlm.nih.gov/pubmed/36333510
http://dx.doi.org/10.1038/s41598-022-23359-7
Descripción
Sumario:Cigarette smoking is a major risk factor for laryngeal diseases. Despite well-documented cigarette smoke (CS) induced laryngeal histopathological changes, the underlying immunopathological mechanisms remain largely unexplored. The goal of this study was to evaluate inflammatory and immune cell responses in a CS-exposed larynx. Specifically, we used a 4-week subacute whole-body CS inhalation mouse model to assess these responses in the laryngeal mucosa upon exposure to low (LD; 1 h/day) and high dose (HD; 4 h/day) CS. Laryngeal tissues were harvested and evaluated using a 254-plex NanoString inflammation panel and neutrophil/macrophage/T-cell immunohistochemistry (IHC). NanoString global and differential gene expression analysis revealed a unique expression profile only in the HD group, with 26 significant differentially expressed genes (DEGs). StringDB KEGG pathway enrichment analysis revealed the involvement of these DEGs with pro-inflammatory pathways including TNF/TNFα and IL-17. Furthermore, inflammatory responses remained inhibited in conjunction with predicted activated states of anti-inflammatory regulators like PPARγ and NFE2L2 upon Ingenuity Pathway Analysis (IPA). Subglottic T-cell levels remained significantly inhibited as corroborated by IPA predictions. Overall, our key findings are consistent with HD exposures being anti-inflammatory and immunosuppressive. Furthermore, the identification of important regulatory genes and enriched pathways may help improve clinical interventions for CS-induced laryngeal diseases.