Cargando…
Learning complex dependency structure of gene regulatory networks from high dimensional microarray data with Gaussian Bayesian networks
Reconstruction of Gene Regulatory Networks (GRNs) of gene expression data with Probabilistic Network Models (PNMs) is an open problem. Gene expression datasets consist of thousand of genes with relatively small sample sizes (i.e. are large-p-small-n). Moreover, dependencies of various orders coexist...
Autores principales: | Graafland, Catharina E., Gutiérrez, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636198/ https://www.ncbi.nlm.nih.gov/pubmed/36333425 http://dx.doi.org/10.1038/s41598-022-21957-z |
Ejemplares similares
-
The probabilistic backbone of data-driven complex networks: an example in climate
por: Graafland, Catharina E., et al.
Publicado: (2020) -
CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data
por: McGeachie, Michael J., et al.
Publicado: (2014) -
Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization
por: Luna, Isabel Tienda, et al.
Publicado: (2007) -
Seeded Bayesian Networks: Constructing genetic networks from microarray data
por: Djebbari, Amira, et al.
Publicado: (2008) -
A Bayesian approach for structure learning in oscillating regulatory networks
por: Trejo Banos, Daniel, et al.
Publicado: (2015)