Cargando…

Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework

Advanced computational methods exploit gene expression and epigenetic datasets to predict gene regulatory networks controlled by transcription factors (TFs). These methods have identified cell fate determining TFs but require large amounts of reference data and experimental expertise. Here, we prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Heuts, B. M. H., Arza-Apalategi, S., Frölich, S., Bergevoet, S. M., van den Oever, S. N., van Heeringen, S. J., van der Reijden, B. A., Martens, J. H. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636203/
https://www.ncbi.nlm.nih.gov/pubmed/36333382
http://dx.doi.org/10.1038/s41598-022-21148-w
_version_ 1784824887775330304
author Heuts, B. M. H.
Arza-Apalategi, S.
Frölich, S.
Bergevoet, S. M.
van den Oever, S. N.
van Heeringen, S. J.
van der Reijden, B. A.
Martens, J. H. A.
author_facet Heuts, B. M. H.
Arza-Apalategi, S.
Frölich, S.
Bergevoet, S. M.
van den Oever, S. N.
van Heeringen, S. J.
van der Reijden, B. A.
Martens, J. H. A.
author_sort Heuts, B. M. H.
collection PubMed
description Advanced computational methods exploit gene expression and epigenetic datasets to predict gene regulatory networks controlled by transcription factors (TFs). These methods have identified cell fate determining TFs but require large amounts of reference data and experimental expertise. Here, we present an easy to use network-based computational framework that exploits enhancers defined by bidirectional transcription, using as sole input CAGE sequencing data to correctly predict TFs key to various human cell types. Next, we applied this Analysis Algorithm for Networks Specified by Enhancers based on CAGE (ANANSE-CAGE) to predict TFs driving red and white blood cell development, and THP-1 leukemia cell immortalization. Further, we predicted TFs that are differentially important to either cell line- or primary- associated MLL-AF9-driven gene programs, and in primary MLL-AF9 acute leukemia. Our approach identified experimentally validated as well as thus far unexplored TFs in these processes. ANANSE-CAGE will be useful to identify transcription factors that are key to any cell fate change using only CAGE-seq data as input.
format Online
Article
Text
id pubmed-9636203
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96362032022-11-06 Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework Heuts, B. M. H. Arza-Apalategi, S. Frölich, S. Bergevoet, S. M. van den Oever, S. N. van Heeringen, S. J. van der Reijden, B. A. Martens, J. H. A. Sci Rep Article Advanced computational methods exploit gene expression and epigenetic datasets to predict gene regulatory networks controlled by transcription factors (TFs). These methods have identified cell fate determining TFs but require large amounts of reference data and experimental expertise. Here, we present an easy to use network-based computational framework that exploits enhancers defined by bidirectional transcription, using as sole input CAGE sequencing data to correctly predict TFs key to various human cell types. Next, we applied this Analysis Algorithm for Networks Specified by Enhancers based on CAGE (ANANSE-CAGE) to predict TFs driving red and white blood cell development, and THP-1 leukemia cell immortalization. Further, we predicted TFs that are differentially important to either cell line- or primary- associated MLL-AF9-driven gene programs, and in primary MLL-AF9 acute leukemia. Our approach identified experimentally validated as well as thus far unexplored TFs in these processes. ANANSE-CAGE will be useful to identify transcription factors that are key to any cell fate change using only CAGE-seq data as input. Nature Publishing Group UK 2022-11-04 /pmc/articles/PMC9636203/ /pubmed/36333382 http://dx.doi.org/10.1038/s41598-022-21148-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Heuts, B. M. H.
Arza-Apalategi, S.
Frölich, S.
Bergevoet, S. M.
van den Oever, S. N.
van Heeringen, S. J.
van der Reijden, B. A.
Martens, J. H. A.
Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
title Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
title_full Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
title_fullStr Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
title_full_unstemmed Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
title_short Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
title_sort identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636203/
https://www.ncbi.nlm.nih.gov/pubmed/36333382
http://dx.doi.org/10.1038/s41598-022-21148-w
work_keys_str_mv AT heutsbmh identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT arzaapalategis identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT frolichs identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT bergevoetsm identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT vandenoeversn identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT vanheeringensj identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT vanderreijdenba identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework
AT martensjha identificationoftranscriptionfactorsdictatingbloodcelldevelopmentusingabidirectionaltranscriptionnetworkbasedcomputationalframework