Cargando…

Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression

Sickle cell disease and β-thalassemia affect the production of the adult β-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Antoniou, Panagiotis, Hardouin, Giulia, Martinucci, Pierre, Frati, Giacomo, Felix, Tristan, Chalumeau, Anne, Fontana, Letizia, Martin, Jeanne, Masson, Cecile, Brusson, Megane, Maule, Giulia, Rosello, Marion, Giovannangeli, Carine, Abramowski, Vincent, de Villartay, Jean-Pierre, Concordet, Jean-Paul, Del Bene, Filippo, El Nemer, Wassim, Amendola, Mario, Cavazzana, Marina, Cereseto, Anna, Romano, Oriana, Miccio, Annarita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636226/
https://www.ncbi.nlm.nih.gov/pubmed/36333351
http://dx.doi.org/10.1038/s41467-022-34493-1
Descripción
Sumario:Sickle cell disease and β-thalassemia affect the production of the adult β-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the −200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy – even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating β-hemoglobinopathies.