Cargando…

Cell-size space effects on phase separation of binary polymer blends

Within living cells, a diverse array of biomolecules is present at high concentrations. To better understand how molecular behavior differs under such conditions (collectively described as macromolecular crowding), the crowding environment has been reproduced inside artificial cells. We have previou...

Descripción completa

Detalles Bibliográficos
Autor principal: Yanagisawa, Miho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636348/
https://www.ncbi.nlm.nih.gov/pubmed/36345284
http://dx.doi.org/10.1007/s12551-022-01001-0
Descripción
Sumario:Within living cells, a diverse array of biomolecules is present at high concentrations. To better understand how molecular behavior differs under such conditions (collectively described as macromolecular crowding), the crowding environment has been reproduced inside artificial cells. We have previously shown that the combination of macromolecular crowding and microscale geometries imposed by the artificial cells can alter the molecular behaviors induced by macromolecular crowding in bulk solutions. We have named the effect that makes such a difference the cell-size space effect (CSE). Here, we review the underlying biophysics of CSE for phase separation of binary polymer blends. We discuss how the cell-size space can initiate phase separation, unlike nano-sized spaces, which are known to hinder nucleation and phase separation. Additionally, we discuss how the dimensions of the artificial cell and its membrane characteristics can significantly impact phase separation dynamics and equilibrium composition. Although these findings are, of themselves, very interesting, their real significance may lie in helping to clarify the functions of the cell membrane and space size in the regulation of intracellular phase separation.