Cargando…
Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists’ Dilated Examinations
OBJECTIVE: To compare general ophthalmologists, retina specialists, and the EyeArt Artificial Intelligence (AI) system to the clinical reference standard for detecting more than mild diabetic retinopathy (mtmDR). DESIGN: Prospective, pivotal, multicenter trial conducted from April 2017 to May 2018....
Autores principales: | Lim, Jennifer Irene, Regillo, Carl D., Sadda, SriniVas R., Ipp, Eli, Bhaskaranand, Malavika, Ramachandra, Chaithanya, Solanki, Kaushal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636573/ https://www.ncbi.nlm.nih.gov/pubmed/36345378 http://dx.doi.org/10.1016/j.xops.2022.100228 |
Ejemplares similares
-
The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes
por: Bhaskaranand, Malavika, et al.
Publicado: (2019) -
Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy
por: Ipp, Eli, et al.
Publicado: (2021) -
Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis
por: Carrera-Escalé, Laura, et al.
Publicado: (2022) -
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis
por: Coyner, Aaron S., et al.
Publicado: (2022) -
Diversity in people's reluctance to use medical artificial intelligence: Identifying subgroups through latent profile analysis
por: Wang, Haixia, et al.
Publicado: (2022)