Cargando…
Quantitative CT analysis to predict esophageal fistula in patients with advanced esophageal cancer treated by chemotherapy or chemoradiotherapy
BACKGROUND: Esophageal fistula is one of the most serious complications of chemotherapy or chemoradiotherapy (CRT) for advanced esophageal cancer. This study aimed to evaluate the performance of quantitative computed tomography (CT) analysis and to establish a practical imaging model for predicting...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636691/ https://www.ncbi.nlm.nih.gov/pubmed/36333763 http://dx.doi.org/10.1186/s40644-022-00490-2 |
Sumario: | BACKGROUND: Esophageal fistula is one of the most serious complications of chemotherapy or chemoradiotherapy (CRT) for advanced esophageal cancer. This study aimed to evaluate the performance of quantitative computed tomography (CT) analysis and to establish a practical imaging model for predicting esophageal fistula in esophageal cancer patients treated with chemotherapy or chemoradiotherapy. METHODS: This study retrospectively enrolled 204 esophageal cancer patients (54 patients with fistula, 150 patients without fistula) and all patients were allocated to the primary and validation cohorts according to the time of inclusion in a 1:1 ratio. Ulcer depth, tumor thickness and length, and minimum and maximum enhanced CT values of esophageal cancer were measured in pretreatment CT imaging. Logistic regression analysis was used to evaluate the associations of CT quantitative measurements with esophageal fistula. Receiver operating characteristic curve (ROC) analysis was also used. RESULTS: Logistic regression analysis showed that independent predictors of esophageal fistula included tumor thickness [odds ratio (OR) = 1.167; p = 0.037], the ratio of ulcer depth to adjacent tumor thickness (OR = 164.947; p < 0.001), and the ratio of minimum to maximum enhanced CT value (OR = 0.006; p = 0.039) in the primary cohort at baseline CT imaging. These predictors were used to establish a predictive model for predicting esophageal fistula, with areas under the receiver operating characteristic curves (AUCs) of 0.946 and 0.841 in the primary and validation cohorts, respectively. The quantitative analysis combined with T stage for predicting esophageal fistula had AUCs of 0.953 and 0.917 in primary and validation cohorts, respectively. CONCLUSION: Quantitative pretreatment CT analysis has excellent performance for predicting fistula formation in esophageal cancer patients who treated by chemotherapy or chemoradiotherapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-022-00490-2. |
---|