Cargando…

Chemoinformatics-driven classification of Angiosperms using sulfur-containing compounds and machine learning algorithm

BACKGROUND: Phytochemicals or secondary metabolites are low molecular weight organic compounds with little function in plant growth and development. Nevertheless, the metabolite diversity govern not only the phenetics of an organism but may also inform the evolutionary pattern and adaptation of gree...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdullah-Zawawi, Muhammad-Redha, Govender, Nisha, Karim, Mohammad Bozlul, Altaf-Ul-Amin, Md., Kanaya, Shigehiko, Mohamed-Hussein, Zeti-Azura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636760/
https://www.ncbi.nlm.nih.gov/pubmed/36335358
http://dx.doi.org/10.1186/s13007-022-00951-6
Descripción
Sumario:BACKGROUND: Phytochemicals or secondary metabolites are low molecular weight organic compounds with little function in plant growth and development. Nevertheless, the metabolite diversity govern not only the phenetics of an organism but may also inform the evolutionary pattern and adaptation of green plants to the changing environment. Plant chemoinformatics analyzes the chemical system of natural products using computational tools and robust mathematical algorithms. It has been a powerful approach for species-level differentiation and is widely employed for species classifications and reinforcement of previous classifications. RESULTS: This study attempts to classify Angiosperms using plant sulfur-containing compound (SCC) or sulphated compound information. The SCC dataset of 692 plant species were collected from the comprehensive species-metabolite relationship family (KNApSAck) database. The structural similarity score of metabolite pairs under all possible combinations (plant species-metabolite) were determined and metabolite pairs with a Tanimoto coefficient value > 0.85 were selected for clustering using machine learning algorithm. Metabolite clustering showed association between the similar structural metabolite clusters and metabolite content among the plant species. Phylogenetic tree construction of Angiosperms displayed three major clades, of which, clade 1 and clade 2 represented the eudicots only, and clade 3, a mixture of both eudicots and monocots. The SCC-based construction of Angiosperm phylogeny is a subset of the existing monocot-dicot classification. The majority of eudicots present in clade 1 and 2 were represented by glucosinolate compounds. These clades with SCC may have been a mixture of ancestral species whilst the combinatorial presence of monocot-dicot in clade 3 suggests sulphated-chemical structure diversification in the event of adaptation during evolutionary change. CONCLUSIONS: Sulphated chemoinformatics informs classification of Angiosperms via machine learning technique. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13007-022-00951-6.