Cargando…
GABA signaling enforces intestinal germinal center B cell differentiation
Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA(+) B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (G...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636909/ https://www.ncbi.nlm.nih.gov/pubmed/36279432 http://dx.doi.org/10.1073/pnas.2215921119 |
Sumario: | Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA(+) B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN. |
---|