Cargando…
Estimating the total treatment effect in randomized experiments with unknown network structure
Randomized experiments are widely used to estimate the causal effects of a proposed treatment in many areas of science, from medicine and healthcare to the physical and biological sciences, from the social sciences to engineering, and from public policy to the technology industry. Here we consider s...
Autores principales: | Yu, Christina Lee, Airoldi, Edoardo M., Borgs, Christian, Chayes, Jennifer T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636977/ https://www.ncbi.nlm.nih.gov/pubmed/36279463 http://dx.doi.org/10.1073/pnas.2208975119 |
Ejemplares similares
-
ChatGPT Research
Group for Optimizing the Crystallinity
of MOFs and COFs
por: Zheng, Zhiling, et al.
Publicado: (2023) -
Nonstandard conditionally specified models for nonignorable missing data
por: Franks, Alexander M., et al.
Publicado: (2020) -
A multifactorial model of T cell expansion and durable clinical benefit in response to a PD-L1 inhibitor
por: Leiserson, Mark D. M., et al.
Publicado: (2018) -
Improving the Accuracy of Estimation of Unknown Random Variable Probability Density over Empirical Data
por: Zhidkov, E P, et al.
Publicado: (1999) -
Previously unknown class of metalorganic compounds revealed in meteorites
por: Ruf, Alexander, et al.
Publicado: (2017)