Cargando…
Network Construction for Bearing Fault Diagnosis Based on Double Attention Mechanism
Aiming at the difficulty of feature extraction in the case of multicomponent and strong noise in the traditional rolling bearing fault diagnosis method, this paper proposes a bearing fault diagnosis network with double attention mechanism. The original signal with noise is decomposed into a series o...
Autores principales: | Wu, QingE, Zong, Tao, Cheng, Wenfang, Li, Yong, Li, Penglei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637037/ https://www.ncbi.nlm.nih.gov/pubmed/36345476 http://dx.doi.org/10.1155/2022/3987480 |
Ejemplares similares
-
Ensemble Capsule Network with an Attention Mechanism for the Fault Diagnosis of Bearings from Imbalanced Data Samples
por: Xu, Zengbing, et al.
Publicado: (2022) -
An Attention EfficientNet-Based Strategy for Bearing Fault Diagnosis under Strong Noise
por: Hu, Bingbing, et al.
Publicado: (2022) -
A clustering-optimized segmentation algorithm and application on food quality detection
por: Wu, QingE, et al.
Publicado: (2023) -
Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis
por: Zhou, Shuiqin, et al.
Publicado: (2022) -
A Deep Learning Method for Rolling Bearing Fault Diagnosis Based on Attention Mechanism and Graham Angle Field
por: Lu, Jingyu, et al.
Publicado: (2023)