Cargando…

Label-free and portable field-effect sensor for monitoring RT-LAMP products to detect SARS-CoV-2 in wastewater

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has proven the need for developing reliable and affordable technologies to detect pathogens. Particularly, the detecting the genome in wastewater could be an indicator of the transmission rate to alert on new outbreaks. However, wastewater-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Alvarez-Serna, Bryan E., Ramírez-Chavarría, Roberto G., Castillo-Villanueva, Elizabeth, Carrillo-Reyes, Julián, Ramírez-Zamora, Rosa María, Buitrón, Germán, Alvarez-Icaza, Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637047/
http://dx.doi.org/10.1016/j.talanta.2022.124060
Descripción
Sumario:The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has proven the need for developing reliable and affordable technologies to detect pathogens. Particularly, the detecting the genome in wastewater could be an indicator of the transmission rate to alert on new outbreaks. However, wastewater-based epidemiology remains a technological challenge to develop affordable technologies for sensing pathogens. In this work, we introduce a label-free and portable field-effect transistor (FET)-based sensor to detect N and ORF1ab genes of the SARS-CoV-2 genome. Our sensor integrates the reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction as a cost-effective molecular detection exhibiting high specificity. The detection relies upon pH changes, due to the RT-LAMP reaction products, which are detected through a simple, but effective, extended-gate FET sensor (EGFET). We evaluate the proposed device by measuring real wastewater samples to detect the presence of SARS-CoV-2 genome, achieving a limit of detection of 0.31 × 10(−3) ng/μL for end-point measurement. Moreover, we find the ability of the sensor to perform real-time-like analysis, showing that the RT-LAMP reaction provides a good response after 15 min for concentrations as low as 0.37 ng/μL. Hence, we show that our EGFET sensor offers a powerful tool to detect the presence of the SARS-CoV-2 genome with a naked-eye method, in a straightforward way than the conventional molecular methods for wastewater analysis.