Cargando…
Distributed lag inspired machine learning for predicting vaccine-induced changes in COVID-19 hospitalization and intensive care unit admission
Distributed lags play important roles in explaining the short-run dynamic and long-run cumulative effects of features on a response variable. Unlike the usual lag length selection, important lags with significant weights are selected in a distributed lag model (DLM). Inspired by the importance of di...
Autores principales: | Khan, Atikur R., Hasan, Khandaker Tabin, Abedin, Sumaiya, Khan, Saleheen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637108/ https://www.ncbi.nlm.nih.gov/pubmed/36335113 http://dx.doi.org/10.1038/s41598-022-21969-9 |
Ejemplares similares
-
Effects of corruption and income inequality on the reported number of COVID-19 cases and deaths: Evidence from a time series cross-sectional data analysis
por: Khan, Atikur R., et al.
Publicado: (2022) -
Association of ambient Particulate matter 2.5 with intensive care unit admission due to pneumonia: a distributed lag non-linear model
por: Zhang, Zhongheng, et al.
Publicado: (2017) -
Bio-inspired Machine Learning for Distributed Confidential Multi-Portfolio Selection Problem
por: Khan, Ameer Tamoor, et al.
Publicado: (2022) -
4P Model for Dynamic Prediction of COVID-19: a Statistical and Machine Learning Approach
por: Hasan, Khandaker Tabin, et al.
Publicado: (2021) -
Physics-inspired machine learning of localized intensive properties
por: Chen, Ke, et al.
Publicado: (2023)