Cargando…

Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans

The HDL-associated apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) may control energy metabolism. ApoM deficiency in mice is associated with increased vascular permeability, brown adipose tissue (BAT) mass and activity, and protection against obesity. In the current study, we ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Borup, Anna, Donkin, Ida, Boon, Mariëtte R., Frydland, Martin, Martinez-Tellez, Borja, Loft, Annika, Keller, Sune H., Kjaer, Andreas, Kjaergaard, Jesper, Hassager, Christian, Barrès, Romain, Rensen, Patrick C. N., Christoffersen, Christina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637161/
https://www.ncbi.nlm.nih.gov/pubmed/36335116
http://dx.doi.org/10.1038/s41598-022-21938-2
Descripción
Sumario:The HDL-associated apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) may control energy metabolism. ApoM deficiency in mice is associated with increased vascular permeability, brown adipose tissue (BAT) mass and activity, and protection against obesity. In the current study, we explored the connection between plasma apoM/S1P levels and parameters of BAT as measured via (18)F-FDG PET/CT after cold exposure in humans. Fixed (n = 15) vs personalized (n = 20) short-term cooling protocols decreased and increased apoM (− 8.4%, P = 0.032 vs 15.7%, P < 0.0005) and S1P (− 41.0%, P < 0.0005 vs 19.1%, P < 0.005) plasma levels, respectively. Long-term cooling (n = 44) did not affect plasma apoM or S1P levels. Plasma apoM and S1P did not correlate significantly to BAT volume and activity in the individual studies. However, short-term studies combined, showed that increased changes in plasma apoM correlated with BAT metabolic activity (β: 0.44, 95% CI [0.06–0.81], P = 0.024) after adjusting for study design but not BAT volume (β: 0.39, 95% CI [− 0.01–0.78], P = 0.054). In conclusion, plasma apoM and S1P levels are altered in response to cold exposure and may be linked to changes in BAT metabolic activity but not BAT volume in humans. This contrasts partly with observations in animals and highlights the need for further studies to understand the biological role of apoM/S1P complex in human adipose tissue and lipid metabolism.