Cargando…

Ion rectification based on gel polymer electrolyte ionic diode

Biological ion channels rely on ions as charge carriers and unidirectional ion flow to produce and transmit signals. To realize artificial biological inspired circuitry and seamless human-machine communication, ion-transport-based rectification devices should be developed. In this research, poly(met...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Fan, Poh, Wei Church, Chen, Juntong, Gao, Dace, Jiang, Feng, Guo, Xiaoyu, Chen, Jian, Lee, Pooi See
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637189/
https://www.ncbi.nlm.nih.gov/pubmed/36335134
http://dx.doi.org/10.1038/s41467-022-34429-9
Descripción
Sumario:Biological ion channels rely on ions as charge carriers and unidirectional ion flow to produce and transmit signals. To realize artificial biological inspired circuitry and seamless human-machine communication, ion-transport-based rectification devices should be developed. In this research, poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) gel polymer electrolytes (GPEs) are assembled to construct a novel ionic diode, enabling ion rectification through ion-diffusion/migration that emulates biological systems. This ion rectification results from the different diffusion/migration behaviors of mobile ions transporting in the GPE heterojunction. The electrical tests of the GPE heterojunction reveal outstanding rectifying ratio of 23.11. The GPE ionic diode operates in wide temperature window, from −20 °C (anti-freezing) to 125 °C (thermal tolerance). The absence of redox reactions is verified in the cyclic voltammogram. The GPE ionic diodes are used to construct ionic logic gates for signal communication. Furthermore, rectification of a triboelectric nanogenerator and potential for synaptic devices are demonstrated.