Cargando…
IL-17A Promotes the Migration, Invasion and the EMT Process of Lung Cancer Accompanied by NLRP3 Activation
BACKGROUND: Lung cancer is a deadly cancer worldwide, and its pathogenesis and treatment methods require continuous research and exploration. As a representative factor of adaptive immunity, the role of interleukin-17A (IL-17A) in lung cancer is still unclear. The purpose of the present study was to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637470/ https://www.ncbi.nlm.nih.gov/pubmed/36349316 http://dx.doi.org/10.1155/2022/7841279 |
Sumario: | BACKGROUND: Lung cancer is a deadly cancer worldwide, and its pathogenesis and treatment methods require continuous research and exploration. As a representative factor of adaptive immunity, the role of interleukin-17A (IL-17A) in lung cancer is still unclear. The purpose of the present study was to investigate the effect of IL-17A on the biological behaviour of lung cancer cells and the relative mechanism. METHODS: The human lung adenocarcinoma A549 and H1299 cell lines were used for in vitro study. The effects of IL-17A on cell proliferation, migration and invasion were assessed by CCK-8 assay, wound-healing assay, transwell invasion assay and real-time cell analysis (RTCA). The expression levels of marker proteins in the process of epithelial-mesenchymal transition (EMT) were detected by western blot analysis. Caspase-1 activity and the concentration of IL-1β after NLRP3 inflammasome activation were measured by a Caspase-1 Activity Assay Kit and an IL-1β ELISA kit, respectively. RESULTS: Compared to the control group, IL-17A treatment did not affect the proliferation of A549 and H1299 cells in vitro, but it promoted cell migration, invasion and the EMT process. IL-17A treatment increased NLRP3 expression, caspase-1 activity and IL-1β level. Blockade of NLRP3 alleviated the cell migration, invasion and the EMT process induced by IL-17A. CONCLUSIONS: In conclusion, these findings indicated that NLRP3 participates in the migration, invasion and the EMT process of IL-17A-stimulated lung cells in vitro. |
---|