Cargando…
Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment
Both ecological and economic considerations dictate minimising wastage of volatile anaesthetics. To reconcile apparent opposing stakes between ecological/economical concerns and stability of anaesthetic delivery, new workstations feature automated software that continually optimizes the FGF to relia...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637609/ https://www.ncbi.nlm.nih.gov/pubmed/34978655 http://dx.doi.org/10.1007/s10877-021-00803-z |
_version_ | 1784825224644001792 |
---|---|
author | Kalmar, Alain F. Van Der Vekens, Nicky De Rydt, Fréderic Allaert, Silvie Van De Velde, Marc Mulier, Jan |
author_facet | Kalmar, Alain F. Van Der Vekens, Nicky De Rydt, Fréderic Allaert, Silvie Van De Velde, Marc Mulier, Jan |
author_sort | Kalmar, Alain F. |
collection | PubMed |
description | Both ecological and economic considerations dictate minimising wastage of volatile anaesthetics. To reconcile apparent opposing stakes between ecological/economical concerns and stability of anaesthetic delivery, new workstations feature automated software that continually optimizes the FGF to reliably obtain the requested gas mixture with minimal volatile anaesthetic waste. The aim of this study is to analyse the kinetics and consumption pattern of different approaches of sevoflurane delivery with the same 2% end-tidal goal in all patients. The consumption patterns of sevoflurane of a Flow-i were retrospectively studied in cases with a target end-tidal sevoflurane concentration (Et(sevo)) of 2%. For each setting, 25 cases were included in the analysis. In Automatic Gas Control (AGC) regulation with software version V4.04, a speed setting 6 was observed; in AGC software version V4.07, speed settings 2, 4, 6 and 8 were observed, as well as a group where a minimal FGF was manually pursued and a group with a fixed 2 L/min FGF. In 45 min, an average of 14.5 mL was consumed in the 2L-FGF group, 5.0 mL in the minimal-manual group, 7.1 mL in the AGC4.04 group and 6.3 mL in the AGC4.07 group. Faster speed AGC-settings resulted in higher consumption, from 6.0 mL in speed 2 to 7.3 mL in speed 8. The Et(sevo) target was acquired fastest in the 2L-FGF group and the Et(sevo) was more stable in the AGC groups and the 2L-FGF groups. In all AGC groups, the consumption in the first 8 min was significantly higher than in the minimal flow group, but then decreased to a comparable rate. The more recent AGC4.07 algorithm was more efficient than the older AGC4.04 algorithm. This study indicates that the AGC technology permits very significant economic and ecological benefits, combined with excellent stability and convenience, over conventional FGF settings and should be favoured. While manually regulated minimal flow is still slightly more economical compared to the automated algorithm, this comes with a cost of lower precision of the Et(sevo). Further optimization of the AGC algorithms, particularly in the early wash-in period seems feasible. In AGC mode, lower speed settings result in significantly lower consumption of sevoflurane. Routine clinical practice using what historically is called “low flow anaesthesia” (e.g. 2 L/min FGF) should be abandoned, and all anaesthesia machines should be upgraded as soon as possible with automatic delivery technology to minimize atmospheric pollution with volatile anaesthetics. |
format | Online Article Text |
id | pubmed-9637609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-96376092022-11-08 Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment Kalmar, Alain F. Van Der Vekens, Nicky De Rydt, Fréderic Allaert, Silvie Van De Velde, Marc Mulier, Jan J Clin Monit Comput Original Research Both ecological and economic considerations dictate minimising wastage of volatile anaesthetics. To reconcile apparent opposing stakes between ecological/economical concerns and stability of anaesthetic delivery, new workstations feature automated software that continually optimizes the FGF to reliably obtain the requested gas mixture with minimal volatile anaesthetic waste. The aim of this study is to analyse the kinetics and consumption pattern of different approaches of sevoflurane delivery with the same 2% end-tidal goal in all patients. The consumption patterns of sevoflurane of a Flow-i were retrospectively studied in cases with a target end-tidal sevoflurane concentration (Et(sevo)) of 2%. For each setting, 25 cases were included in the analysis. In Automatic Gas Control (AGC) regulation with software version V4.04, a speed setting 6 was observed; in AGC software version V4.07, speed settings 2, 4, 6 and 8 were observed, as well as a group where a minimal FGF was manually pursued and a group with a fixed 2 L/min FGF. In 45 min, an average of 14.5 mL was consumed in the 2L-FGF group, 5.0 mL in the minimal-manual group, 7.1 mL in the AGC4.04 group and 6.3 mL in the AGC4.07 group. Faster speed AGC-settings resulted in higher consumption, from 6.0 mL in speed 2 to 7.3 mL in speed 8. The Et(sevo) target was acquired fastest in the 2L-FGF group and the Et(sevo) was more stable in the AGC groups and the 2L-FGF groups. In all AGC groups, the consumption in the first 8 min was significantly higher than in the minimal flow group, but then decreased to a comparable rate. The more recent AGC4.07 algorithm was more efficient than the older AGC4.04 algorithm. This study indicates that the AGC technology permits very significant economic and ecological benefits, combined with excellent stability and convenience, over conventional FGF settings and should be favoured. While manually regulated minimal flow is still slightly more economical compared to the automated algorithm, this comes with a cost of lower precision of the Et(sevo). Further optimization of the AGC algorithms, particularly in the early wash-in period seems feasible. In AGC mode, lower speed settings result in significantly lower consumption of sevoflurane. Routine clinical practice using what historically is called “low flow anaesthesia” (e.g. 2 L/min FGF) should be abandoned, and all anaesthesia machines should be upgraded as soon as possible with automatic delivery technology to minimize atmospheric pollution with volatile anaesthetics. Springer Netherlands 2022-01-03 2022 /pmc/articles/PMC9637609/ /pubmed/34978655 http://dx.doi.org/10.1007/s10877-021-00803-z Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Research Kalmar, Alain F. Van Der Vekens, Nicky De Rydt, Fréderic Allaert, Silvie Van De Velde, Marc Mulier, Jan Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
title | Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
title_full | Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
title_fullStr | Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
title_full_unstemmed | Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
title_short | Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
title_sort | minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637609/ https://www.ncbi.nlm.nih.gov/pubmed/34978655 http://dx.doi.org/10.1007/s10877-021-00803-z |
work_keys_str_mv | AT kalmaralainf minimizingsevofluranewastagebysensibleuseofautomatedgascontroltechnologyintheflowiworkstationaneconomicandecologicalassessment AT vandervekensnicky minimizingsevofluranewastagebysensibleuseofautomatedgascontroltechnologyintheflowiworkstationaneconomicandecologicalassessment AT derydtfrederic minimizingsevofluranewastagebysensibleuseofautomatedgascontroltechnologyintheflowiworkstationaneconomicandecologicalassessment AT allaertsilvie minimizingsevofluranewastagebysensibleuseofautomatedgascontroltechnologyintheflowiworkstationaneconomicandecologicalassessment AT vandeveldemarc minimizingsevofluranewastagebysensibleuseofautomatedgascontroltechnologyintheflowiworkstationaneconomicandecologicalassessment AT mulierjan minimizingsevofluranewastagebysensibleuseofautomatedgascontroltechnologyintheflowiworkstationaneconomicandecologicalassessment |