Cargando…
Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas
INTRODUCTION: Infra-red (IR) and visible light (VL) based systems developed for transmission of information about physical quantities (e.g. humidity, temperature) out from closed areas, cannot be effectively employed in case of specific conditions in a targeted environment (because of fog or vapor f...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637743/ https://www.ncbi.nlm.nih.gov/pubmed/36328753 http://dx.doi.org/10.1016/j.jare.2022.01.005 |
_version_ | 1784825253039439872 |
---|---|
author | Sotner, Roman Jerabek, Jan Polak, Ladislav Prokop, Roman Ayten, Umut Engin Jaikla, Winai |
author_facet | Sotner, Roman Jerabek, Jan Polak, Ladislav Prokop, Roman Ayten, Umut Engin Jaikla, Winai |
author_sort | Sotner, Roman |
collection | PubMed |
description | INTRODUCTION: Infra-red (IR) and visible light (VL) based systems developed for transmission of information about physical quantities (e.g. humidity, temperature) out from closed areas, cannot be effectively employed in case of specific conditions in a targeted environment (because of fog or vapor for example). OBJECTIVES: In this work, we introduce a concept of wireless short-range transmitter and receiver to sense physical quantities, for instance temperature, with slow variation. The proposed concept is able to transmit analog-based information from isolated environments (e.g. aquariums or environments for plant growing) with high immunity against vapor and fog that limits standard optical (laser, IR band) methods of communication. METHODS: In this work, a new concept of short range radiofrequency (RF) communication device consisting of transmitting and receiving parts build from active devices fabricated in 0.35 μm I3T25 3.3 V CMOS process and ferrite antennas is selected. RF part uses medium-wave propagation within 10 mm distance at frequency 700 kHz. Such an approach offers minimal path loss of the radiated energy of a signal and low-gain amplification required for restoration of similar levels as available at the transmitting side. RESULTS: The processing of base-band signals of simple (sine wave) and complex (electrocardiogram) character was verified experimentally through the system. Application example of temperature monitoring in a closed environment, based on a temperature sensor (thermistor), verifies operationability in temperature range from 10 °C up to 50 °C. CONCLUSION: Compared to state-of-the-art solution, the presented concept has several advantages, for instance: less complexity; using of simpler type of modulation and demodulation; lower power consumption and significantly reduced issues caused by an environment with special transmission conditions (e.g. fog and vapor). The obtained results are in good agreement with expectations. Among others, the presented system brings beneficial performances for similar applications targeting on monitoring of low-frequency or slowly varying signals. |
format | Online Article Text |
id | pubmed-9637743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96377432022-11-08 Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas Sotner, Roman Jerabek, Jan Polak, Ladislav Prokop, Roman Ayten, Umut Engin Jaikla, Winai J Adv Res Original Article INTRODUCTION: Infra-red (IR) and visible light (VL) based systems developed for transmission of information about physical quantities (e.g. humidity, temperature) out from closed areas, cannot be effectively employed in case of specific conditions in a targeted environment (because of fog or vapor for example). OBJECTIVES: In this work, we introduce a concept of wireless short-range transmitter and receiver to sense physical quantities, for instance temperature, with slow variation. The proposed concept is able to transmit analog-based information from isolated environments (e.g. aquariums or environments for plant growing) with high immunity against vapor and fog that limits standard optical (laser, IR band) methods of communication. METHODS: In this work, a new concept of short range radiofrequency (RF) communication device consisting of transmitting and receiving parts build from active devices fabricated in 0.35 μm I3T25 3.3 V CMOS process and ferrite antennas is selected. RF part uses medium-wave propagation within 10 mm distance at frequency 700 kHz. Such an approach offers minimal path loss of the radiated energy of a signal and low-gain amplification required for restoration of similar levels as available at the transmitting side. RESULTS: The processing of base-band signals of simple (sine wave) and complex (electrocardiogram) character was verified experimentally through the system. Application example of temperature monitoring in a closed environment, based on a temperature sensor (thermistor), verifies operationability in temperature range from 10 °C up to 50 °C. CONCLUSION: Compared to state-of-the-art solution, the presented concept has several advantages, for instance: less complexity; using of simpler type of modulation and demodulation; lower power consumption and significantly reduced issues caused by an environment with special transmission conditions (e.g. fog and vapor). The obtained results are in good agreement with expectations. Among others, the presented system brings beneficial performances for similar applications targeting on monitoring of low-frequency or slowly varying signals. Elsevier 2022-02-05 /pmc/articles/PMC9637743/ /pubmed/36328753 http://dx.doi.org/10.1016/j.jare.2022.01.005 Text en © 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Sotner, Roman Jerabek, Jan Polak, Ladislav Prokop, Roman Ayten, Umut Engin Jaikla, Winai Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas |
title | Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas |
title_full | Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas |
title_fullStr | Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas |
title_full_unstemmed | Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas |
title_short | Short range electromagnetic interface using 0.35 μm CMOS blocks for temperature monitoring in isolated areas |
title_sort | short range electromagnetic interface using 0.35 μm cmos blocks for temperature monitoring in isolated areas |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637743/ https://www.ncbi.nlm.nih.gov/pubmed/36328753 http://dx.doi.org/10.1016/j.jare.2022.01.005 |
work_keys_str_mv | AT sotnerroman shortrangeelectromagneticinterfaceusing035mmcmosblocksfortemperaturemonitoringinisolatedareas AT jerabekjan shortrangeelectromagneticinterfaceusing035mmcmosblocksfortemperaturemonitoringinisolatedareas AT polakladislav shortrangeelectromagneticinterfaceusing035mmcmosblocksfortemperaturemonitoringinisolatedareas AT prokoproman shortrangeelectromagneticinterfaceusing035mmcmosblocksfortemperaturemonitoringinisolatedareas AT aytenumutengin shortrangeelectromagneticinterfaceusing035mmcmosblocksfortemperaturemonitoringinisolatedareas AT jaiklawinai shortrangeelectromagneticinterfaceusing035mmcmosblocksfortemperaturemonitoringinisolatedareas |