Cargando…
Designing Resilient Manufacturing Systems using Cross Domain Application of Machine Learning Resilience
The COVID-19 pandemic and crises like the Ukraine-Russia war have led to numerous restrictions for industrial manufacturing due to interrupted supply chains, staff absences due to illness or quarantine measures, and order situations that changed significantly at short notice. These influences have e...
Autores principales: | Mukherjee, Avik, Glatt, Moritz, Mustafa, Waleed, Kloft, Marius, Aurich, Jan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637926/ https://www.ncbi.nlm.nih.gov/pubmed/36373025 http://dx.doi.org/10.1016/j.procir.2022.10.054 |
Ejemplares similares
-
Resiliency of Mutualistic Supplier-Manufacturer Networks
por: Xu, Mengkai, et al.
Publicado: (2019) -
Collaborative approaches in sustainable and resilient manufacturing
por: Camarinha-Matos, Luis M., et al.
Publicado: (2022) -
Smart and resilient manufacturing in the wake of COVID-19
por: Xu, Xun, et al.
Publicado: (2021) -
Automated machine learning recognition to diagnose flood resilience of railway switches and crossings
por: Sresakoolchai, Jessada, et al.
Publicado: (2023) -
Vaccine supply chain: Resilience-by-design and resilience-by-intervention
por: Trump, Benjamin D., et al.
Publicado: (2022)