Cargando…

Modern applications of cross-classified random effects models in social and behavioral research: Illustration with R package PLmixed

Cross-classified random effects models (CCREMs) have been developed for appropriately analyzing data with a cross-classified structure. Despite its flexibility and the prevalence of cross-classified data in social and behavioral research, CCREMs have been under-utilized in applied research. In this...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Sijia, Jeon, Minjeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637927/
https://www.ncbi.nlm.nih.gov/pubmed/36353076
http://dx.doi.org/10.3389/fpsyg.2022.976964
Descripción
Sumario:Cross-classified random effects models (CCREMs) have been developed for appropriately analyzing data with a cross-classified structure. Despite its flexibility and the prevalence of cross-classified data in social and behavioral research, CCREMs have been under-utilized in applied research. In this article, we present CCREMs as a general and flexible modeling framework, and present a wide range of existing models designed for different purposes as special instances of CCREMs. We also introduce several less well-known applications of CCREMs. The flexibility of CCREMs allows these models to be easily extended to address substantive questions. We use the free R package PLmixed to illustrate the estimation of these models, and show how the general language of the CCREM framework can be translated into specific modeling contexts.