Cargando…
Modern applications of cross-classified random effects models in social and behavioral research: Illustration with R package PLmixed
Cross-classified random effects models (CCREMs) have been developed for appropriately analyzing data with a cross-classified structure. Despite its flexibility and the prevalence of cross-classified data in social and behavioral research, CCREMs have been under-utilized in applied research. In this...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637927/ https://www.ncbi.nlm.nih.gov/pubmed/36353076 http://dx.doi.org/10.3389/fpsyg.2022.976964 |
Sumario: | Cross-classified random effects models (CCREMs) have been developed for appropriately analyzing data with a cross-classified structure. Despite its flexibility and the prevalence of cross-classified data in social and behavioral research, CCREMs have been under-utilized in applied research. In this article, we present CCREMs as a general and flexible modeling framework, and present a wide range of existing models designed for different purposes as special instances of CCREMs. We also introduce several less well-known applications of CCREMs. The flexibility of CCREMs allows these models to be easily extended to address substantive questions. We use the free R package PLmixed to illustrate the estimation of these models, and show how the general language of the CCREM framework can be translated into specific modeling contexts. |
---|